首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
无线电   18篇
一般工业技术   1篇
冶金工业   1篇
自动化技术   4篇
  2019年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2006年   3篇
  2005年   1篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1997年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
In order to increase cognitive radios (CRs) operation efficiency, there has been an increasing interest in strengthening awareness level about spectrum utilisation. In this respect, this paper proposes to exploit the fittingness factor concept to capture the suitability of spectral resources exhibiting time-varying characteristics to support a set of heterogeneous CR applications. First, a new knowledge management functional architecture for optimizing spectrum management has been constructed. It integrates a set of advanced statistics capturing the influence of the dynamic radio environment on the fittingness factor. Then, a knowledge manager (KM) exploiting these statistics to monitor time-varying suitability of spectrum resources has been proposed to support the spectrum selection (SS) decision-making process. In particular, a new Fittingness Factor-based strategy combining two SS and spectrum mobility (SM) functionalities has been proposed, following either a greedy or a proactive approach. Results have shown that, with a proper fittingness factor function, the greedy approach efficiently exploits the KM support at low loads and the SM functionality at high loads to introduce significant gains in terms of the user dissatisfaction probability. The proactive approach has been shown to maintain the introduced performance gain while minimizing the signalling requirements in terms of spectrum handover rate.  相似文献   
2.
3.
Third-generation mobile communication systems will bring a wide range of new services with different quality of service requirements and will open the ability to exploit radio resource management functions to guarantee a certain target QoS, to maintain the planned coverage area and to offer a high-capacity while using the radio resources in an efficient way. RRM functions impact the overall system efficiency and the operator infrastructure cost, so they will definitively play an important role in a mature 3G scenario. In order to provide some insight into radio resource management (RRM) strategies implementation, a range of representative case-studies with several innovative algorithms are presented and supported by simulation results in a realistic UMTS Terrestrial Radio Access Network scenario as devised in the 3GGP standardization forum. In particular, a decentralized uplink transmission rate selection algorithm in the short term, a congestion control mechanism to cope with overload situations, and downlink scheduling for layered streaming video packets are proposed.  相似文献   
4.
Users’ expectations towards technology, in terms of quality, service availability and accessibility are ever increasing. Aligned with this, the wireless world is rapidly moving towards the next generation of systems, featuring cooperating and reconfiguring capabilities for coexisting (and upcoming) Radio Access Technologies (RATs), so that to improve connectivity and reduce costs. In this respect, conventional planning and management techniques ought to be replaced by advanced schemes that consider multidimensional characteristics, increased complexity and high speeds. To this effect, means are needed capable to support scalability and to cater for advanced service features, provided to users at high rates and cost-effectively. This article provides a scheme to optimize resource management in future systems, by describing a platform that accommodates engineering mechanisms that deal with dynamic, demand driven planning and managing of spectrum and radio resources in reconfigurable networks. To do so, it first discusses the fundamentals and the approach followed in the proposed architecture and then investigates the basic functional modules. The architecture is validated through a set of use-cases that exemplify the operational applicability and efficiency in a wide range of communication scenarios.
Panagiotis DemestichasEmail:
  相似文献   
5.
In the context of third-generation (3G) systems a mix of services with different requirements are expected. Consequently, packet scheduling mechanisms for quality of service (QoS) guarantees will play a key role. This paper proposes a new scheduling strategy that makes consistent the target quality in the radio link with the priority level assigned to each user. The performance of such a strategy is assessed by system level simulations and, in order to gain more insight into the difficulties of this optimization problem, it is compared to other alternatives. This work is part of the Wineglass project, within the Fifth Framework Program of the European Commission (IST), where a real time demonstrator including the radio resource management tasks is being developed. Thus, an implementation approach of the proposed scheduling is also described. The implementation is based on lookup tables and this approach is validated by simulation  相似文献   
6.
Code-division multiple-access (CDMA) schemes appear to be very promising access techniques for coping with the requirements of third-generation mobile systems, mainly because of their flexibility. This paper proposes an adaptive S-ALOHA DS-CDMA access scheme as a method for integrating nonreal-time (i.e., Internet applications) and real-time (i.e., voice) services in a multicell scenario by exploiting the potentials of CDMA under time-varying channel load conditions. The adaptive component makes data terminals autonomously change their transmission rate according to the total (voice+data) channel occupancy, so that the minimum possible data delay, which can be analytically obtained by defining a birth-death process, is almost always achieved. Moreover, by means of a simplified cellular model, the proposed algorithm revealed the same behavior, i.e., it tries to select the most suitable transmission rate at any time slot, when it is affected by intercell interference and even by power control imperfections. Finally, in order to gain more insight into the potentials of such an access strategy, the adaptive S-ALOHA CDMA scheme is then compared to a reservation time-division multiple-access (TDMA)-based protocol (PRMA++), showing the benefits of the CDMA-based solution in terms of capacity, flexibility, and data delay performance  相似文献   
7.
8.
9.
An efficient and utmost utilization of currently scarce and underutilized radio spectrum resources has stimulated the introduction of what has been coined Cognitive Radio (CR) access methodologies and implementations. While the long-established approach has been based on licensed (or primary) spectrum access, this new communication paradigm enables an opportunistic secondary access to shared spectrum resources provided mutual interference is kept below acceptable levels. In this paper we address the problem of primary-secondary spectrum sharing in cognitive radio access networks using a framework based on a Discrete Time Markov Chain (DTMC) model. Its applicability and advantages with respect to other approaches is explained and further justified. Spectrum awareness of primary activity by the secondary users is based on spectrum sensing techniques, which are modeled in order to capture sensing errors in the form of false-alarm and missed-detection. Model validation is successfully achieved by means of a system-level simulator which is able to capture the system behavior with high degree of accuracy. Parameter dependencies and potential tradeoffs are identified enabling an enhanced operation for both primary and secondary users. The suitability of the specified model is justified while allowing a wide range of extended implementations and enhanced capabilities to be considered.  相似文献   
10.
To increase cognitive radio (CR) operation efficiency, there has been an interest in enhancing the awareness level of spectrum utilization. In this context, this paper builds a new cognitive management functional architecture for spectrum selection (SS). It relies on a knowledge manager (KM) retaining a set of advanced statistics that track the suitability of spectral resources to support a set of heterogeneous applications under varying interference conditions. Based on this architecture, a novel proactive strategy is proposed for both SS and spectrum mobility (SM) functionalities. The required interactions between the proposed decision-making processes are described, and their capability to exhibit robustness to unexpected changes in the radio environment is highlighted. The results show that the proposed strategy efficiently exploits the KM support for low loads, while the SM functionality introduces significant gains for high loads with respect to other strategies. Finally, to assess the practicality of the proposed approach, the signaling requirements in the radio interface are evaluated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号