首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3707篇
  免费   177篇
  国内免费   16篇
电工技术   66篇
综合类   4篇
化学工业   805篇
金属工艺   150篇
机械仪表   136篇
建筑科学   53篇
能源动力   138篇
轻工业   240篇
水利工程   11篇
石油天然气   7篇
无线电   629篇
一般工业技术   772篇
冶金工业   417篇
原子能技术   38篇
自动化技术   434篇
  2023年   47篇
  2022年   79篇
  2021年   110篇
  2020年   97篇
  2019年   105篇
  2018年   114篇
  2017年   99篇
  2016年   119篇
  2015年   94篇
  2014年   116篇
  2013年   234篇
  2012年   191篇
  2011年   241篇
  2010年   166篇
  2009年   173篇
  2008年   192篇
  2007年   161篇
  2006年   134篇
  2005年   118篇
  2004年   91篇
  2003年   79篇
  2002年   89篇
  2001年   69篇
  2000年   66篇
  1999年   77篇
  1998年   121篇
  1997年   99篇
  1996年   65篇
  1995年   49篇
  1994年   48篇
  1993年   47篇
  1992年   25篇
  1991年   32篇
  1990年   28篇
  1989年   20篇
  1988年   29篇
  1987年   21篇
  1986年   22篇
  1985年   27篇
  1984年   22篇
  1983年   18篇
  1982年   16篇
  1981年   22篇
  1980年   21篇
  1979年   13篇
  1978年   14篇
  1977年   12篇
  1976年   25篇
  1975年   6篇
  1974年   12篇
排序方式: 共有3900条查询结果,搜索用时 31 毫秒
1.
Covalent organic frameworks (COFs) show advantageous characteristics, such as an ordered pore structure and a large surface area for gas storage and separation, energy storage, catalysis, and molecular separation. However, COFs usually exist as difficult-to-process powders, and preparing continuous, robust, flexible, foldable, and rollable COF membranes is still a challenge. Herein, such COF membranes with fiber morphology for the first time prepared via a newly introduced template-assisted framework process are reported. This method uses electrospun porous polymer membranes as a sacrificial large dimension template for making self-standing COF membranes. The porous COF fiber membranes, besides having high crystallinity, also show a large surface area (1153 m2 g−1), good mechanical stability, excellent thermal stability, and flexibility. This study opens up the possibility of preparation of large dimension COF membranes and their derivatives in a simple way and hence shows promise in technical applications in separation, catalysis, and energy in the future.  相似文献   
2.
The incursion of microbial growth on polymeric products can deteriorate their performance and lead to the development of undesirable staining and odors. A growing trend in the industry has aimed to reduce microbial populations on high-touch surfaces via the use of antimicrobials to protect material aesthetics and durability or to prevent the spread of pathogenic microorganisms. In this study, a variety of plastic substrates (30 unique polymer compounds), including poly(acrylonitrile-co-butadiene-co-styrene), poly(butylene terephthalate), poly(etherimide), various thermoplastic elastomers (TPEs), poly(carbonates), and poly(amides), were screened for susceptibility to microbial attack using American Society for Testing and Materials (ASTM) G21 (fungi susceptibility), Japanese Industrial Standard (JIS) Z2801, and modified ASTM E1428-15a (bacterial susceptibility) test standards. TPEs were determined to be most susceptible to microbial attack under the appropriate environmental conditions. Subsequent studies assessed the use of an antimicrobial additive, zinc pyrithione (ZPT), for potential efficacy in a variety of TPE blends for diverse target market applications. ZPT proved to be very effective in protecting TPEs, reducing Staphylococcus aureus and Escherichia coli populations by 99.9% or more in JIS Z2801 testing and inhibiting fungal growth (rating = 0) according to the ASTM G21 standard.  相似文献   
3.
4.
Here, we report a facile approach to electrostatically couple the surface charges of graphite nanoplate (GNP) fillers and poly(methyl methacrylate) (PMMA) polymer particles using ethylene maleic anhydride (EMA) copolymer as an electrostatic coupling agent. Our strategy involved switching the intrinsic repulsive electrostatic interactions between the directly exfoliated GNPs fillers and the PMMA particles to attractive electrostatic surface interactions for preparing core(PMMA)-shell (GNP) precursor in order to optimizing 3-dimensionally dispersed polymer nanocomposite. As a result, the electrical conductivity of the composites dramatically increased by a factor of 16.7 in the EMA-coupled GNP/PMMA composites compared with that of the EMA-free GNP/PMMA composites. In addition, the percolation threshold was also notably reduced from 0.32 to 0.159 vol% after electrostatic coupling of the GNPs fillers and PMMA particles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48390.  相似文献   
5.
Exposure to ammonia (NH3) increases the dark current (DC) in nanocrystalline silicon. Light soaking (LS) for short periods also enhances the dark current, which remains at a high value for a long time. Pumping alone is unable to restore the initial annealed state, but annealing brings it back. The final state obtained by LS and NH3 exposure depends on the order in which they are performed. Evaporated selenium (Se) deposited on nanocrystalline silicon decreases the DC. These effects cannot be explained entirely by the presence of a-Si : H alone, in our sample. DC and photoluminescence (PL) measurements indicate the presence of two types of center in our sample, which behave differently when exposed to NH3.  相似文献   
6.
Static energy reduction techniques for microprocessor caches   总被引:1,自引:0,他引:1  
Microprocessor performance has been improved by increasing the capacity of on-chip caches. However, the performance gain comes at the price of static energy consumption due to subthreshold leakage current in cache memory arrays. This paper compares three techniques for reducing static energy consumption in on-chip level-1 and level-2 caches. One technique employs low-leakage transistors in the memory cell. Another technique, power supply switching, can be used to turn off memory cells and discard their contents. A third alternative is dynamic threshold modulation, which places memory cells in a standby state that preserves cell contents. In our experiments, we explore the energy and performance tradeoffs of these techniques. We also investigate the sensitivity of microprocessor performance and energy consumption to additional cache latency caused by leakage-reduction techniques.  相似文献   
7.
This paper presents a low‐cost RF parameter estimation technique using a new RF built‐in self‐test (BIST) circuit and efficient DC measurement for 4.5 to 5.5 GHz low noise amplifiers (LNAs). The BIST circuit measures gain, noise figure, input impedance, and input return loss for an LNA. The BIST circuit is designed using 0.18 μm SiGe technology. The test technique utilizes input impedance matching and output DC voltage measurements. The technique is simple and inexpensive.  相似文献   
8.
Most embedded systems have limited amount of memory. In contrast, the memory requirements of the digital signal processing (DSP) and video processing codes (in nested loops, in particular) running on embedded systems is significant. This paper addresses the problem of estimating and reducing the amount of memory needed for transfers of data in embedded systems. First, the problem of estimating the region associated with a statement or the set of elements referenced by a statement during the execution of nested loops is analyzed. For a fixed execution ordering, a quantitative analysis of the number of elements referenced is presented; exact expressions for uniformly generated references and a close upper and lower bound for nonuniformly generated references are derived. Second, in addition to presenting an algorithm that computes the total memory required, this paper also discusses the effect of transformations (that change the execution ordering) on the lifetimes of array variables, i.e., the time between the first and last accesses to a given array location. The term maximum window size is introduced, and quantitative expressions are derived to compute the maximum window size. A detailed analysis of the effect of unimodular transformations on data locality, including the calculation of the maximum window size, is presented.  相似文献   
9.
The Monkman-Grant (M-G) and its modified parameters were evaluated for type 316LN and modified 9Cr-Mo stainless steels prepared with minor element variations. Several sets of creep data for the two alloy systems were obtained by constant-load creep tests in 550-650°C temperature range. The M-G parameters,m, m’,C, andC’ were proposed and discussed for the two alloy systems. Them value of the M-G relation was 0.90 in type 316LN steel and 0.84 in modified 9Cr-Mo steel. Them’, value of the modified relation was 0.94 in type 316LN steel and 0.89 in 9Cr-Mo steel. Although creep fracture modes and creep properties between type 316LN and modified 9Cr-Mo steels showed a basic difference, the M-G and its modified relations demonstrated linearity quite well. Them’ of modified relation almost overlapped regardless of the creep testing conditions and chemical variations in the two alloy systems, and the parameterm’ was closer to unity than that of the M-G relation.  相似文献   
10.
Copolyesters containing poly(ethylene terephthalate) and poly(hexamethylene terephthalate) (PHT) were prepared by a melt condensation reaction. The copolymers were characterised by infrared spectroscopy and intrinsic viscosity measurements. The density of the copolyesters decreased with increasing percentage of PHT segments in the backbone. Glass transition temperatures (Tg). melting points (Tm) and crystallisation temperatures (Tc) were determined by differential scanning calorimetry. An increase in the percentage of PHT resulted in decrease in Tg, Tm and Tc. The as-prepared copolyesters were crystalline in nature and no exotherm indicative of cold crystallisation was observed. The relative thermal stability of the polymers was evaluated by dynamic thermogravimetry in a nitrogen atmosphere. An increase in percentage of PHT resulted in a decrease in initial decomposition temperature. The rate of crystallisation of the copolymers was studied by small angle light scattering. An increase in percentage of PHT resulted in an increase in the rate of crystallisation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号