首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   4篇
化学工业   10篇
金属工艺   1篇
机械仪表   1篇
建筑科学   1篇
能源动力   6篇
轻工业   16篇
水利工程   3篇
无线电   10篇
一般工业技术   8篇
冶金工业   2篇
自动化技术   16篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   5篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   6篇
  2012年   8篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有74条查询结果,搜索用时 31 毫秒
1.
Tonle Sap Lake in Cambodia is arguably the world's most productive freshwater ecosystems, as well as the dominant source of animal protein for the country. The rapid rise of hydropower schemes, deforestation, land development and climate change impacts in the Mekong River Basin, however, now represent serious concerns in regard to Tonle Sap Lake's ecological health and its role in future food security. To this end, the present study identifies significant recent warming of lake temperature and discusses how each of these anthropogenic perturbations in Tonle Sap's floodplain and the Mekong River Basin may be influencing this trend. The lake's dry season monthly average temperature increased by 0.03°C/year between 1988 and 2018, being largely in synchrony with warming trends of the local air temperature and upstream rivers. The impacts of deforestation and agriculture development in the lake's floodplain also exhibited a high correlation with an increased number of warm days observed in the lake, particularly in its southeast region (agriculture R2 = .61; deforestation R2 = .39). A total of 79 dams, resulting in 72 km3 of volumetric water capacity, were constructed between 2003 and 2018 in the Mekong River Basin. This dam development coincided with a decreasing trend in the number of dry season warm days per year in the lower Mekong River, while Tonle Sap Lake's number of dry season warm days continued to increase during this same period. The present study revealed that Tonle Sap Lake's temperature trends are highly influenced by temperature trends in the local climate, agriculture development and deforestation of the lake's watershed. Although there were no noticeable impacts observed from upstream dam development in the Mekong River Basin, local‐to‐regional agricultural and land management of the lake's watershed appear to be effective strategies for maintaining a stable thermal regime in the lake in order to facilitate maximum ecosystem health.  相似文献   
2.
As a relatively new global optimization technique, artificial bee colony (ABC) algorithm becomes popular in recent years for its simplicity and effectiveness. However, there is still an inefficiency in ABC regarding its solution search equation, which is good at exploration but poor at exploitation. To overcome this drawback, a Gaussian bare-bones ABC is proposed, where a new search equation is designed based on utilizing the global best solution. Furthermore, we employ the generalized opposition-based learning strategy to generate new food sources for scout bees, which is beneficial to discover more useful information for guiding search. A comprehensive set of experiments is conducted on 23 benchmark functions and a real-world optimization problem to verify the effectiveness of the proposed approach. Some well-known ABC variants and state-of-the-art evolutionary algorithms are used for comparison. The experimental results show that the proposed approach offers higher solution quality and faster convergence speed.  相似文献   
3.
This paper presents a novel algorithm based on generalized opposition-based learning (GOBL) to improve the performance of differential evolution (DE) to solve high-dimensional optimization problems efficiently. The proposed approach, namely GODE, employs similar schemes of opposition-based DE (ODE) for opposition-based population initialization and generation jumping with GOBL. Experiments are conducted to verify the performance of GODE on 19 high-dimensional problems with D = 50, 100, 200, 500, 1,000. The results confirm that GODE outperforms classical DE, real-coded CHC (crossgenerational elitist selection, heterogeneous recombination, and cataclysmic mutation) and G-CMA-ES (restart covariant matrix evolutionary strategy) on the majority of test problems.  相似文献   
4.
Silicon - The present study evaluated the effect of silicon (Si) seed priming and sulfur (S) foliar spray on drought tolerance of two contrasting maize hybrids viz. drought tolerant Hi-Corn 11 and...  相似文献   
5.
Polyurethane-urea (PUU) nanocomposite membranes have been prepared using various loadings of silica (SiO2) nanoparticles. A Novel PU was fabricated by a two-step bulk polymerization technique based on polycaprolactone (PCL), hexamethylene diisocyanate (HDI), and diamine chain extender, 4,4-methylenebis(2-chloroaniline) (MOCA). The FTIR spectra indicated that the extent of phase separation reduces with increasing SiO2 content. The presence of crystal regions in the soft and hard segments was confirmed by DSC and XRD analyses. The obtained results illustrated a decrement in the gases' permeation in the presence of SiO2 particles. By increasing the filler content up to 15 wt% and pressure of 8 bar, the gas permeation value of the CO2, O2, and N2 decreased 36%, 54%, and 59%, respectively. However, the permselectivity of the CO2/N2 and O2/N2 increased considerably, 55% and 13% respectively. On the contrary, by raising the temperature, a dramatic augmentation in the permeability of all gases with a simultaneous reduction in the selectivity values of both gas pairs was revealed. Increasing the pressure led to a decrease in the permeability values of all membranes for O2 and N2, whereas the permeability for CO2 increased with the pressure. Nevertheless, the selectivity values for the pair of gases increased (at a pressure of 10 bar, 1.66 and 1.17 times the neat PU for CO2/N2 and O2/N2, respectively). Furthermore, the permeability of the CO2, O2, and N2 for the mixed gases was smaller than for pure ones at the same gas upstream pressure. Nonetheless, like the pure gas, the selectivity of both pair gases increased.  相似文献   
6.
7.
The impact of the opposition concept can be observed in many areas around us. This concept has sometimes been called by different names, such as, opposite particles in physics, complement of an event in probability, absolute or relative complement in set theory, and theses and antitheses in dialectic. Recently, opposition-based learning (OBL) was proposed and has been utilized in different soft computing areas. The main idea behind OBL is the simultaneous consideration of a candidate and its corresponding opposite candidate in order to achieve a better approximation for the current solution. OBL has been employed to introduce opposition-based optimization, opposition-based reinforcement learning, and opposition-based neural networks, as some examples among others. This work proposes an Euclidean distance-to-optimal solution proof that shows intuitively why considering the opposite of a candidate solution is more beneficial than another random solution. The proposed intuitive view is generalized to N-dimensional search spaces for black-box problems.  相似文献   
8.
Migration of soluble and suspended materials by directional freezing of aqueous systems has been studied qualitatively. Slow freezing was employed vertically as well as horizontally through solutions and suspensions. In all cases, the impurities (soluble salts as well as suspended materials) were appreciably forced out by dynamic freezing front. The phenomenon worked for concentrating/separating inorganic ions, soluble organic compounds and dyes in synthetic solutions as well as in natural streams. Various analytical techniques were employed to monitor the migrating species through the freezing media. It was found that separation efficiency depends on different factors like rate of cooling, pH and concentration. Model experiments were designed and exercised successfully to employ the technique for treatment of dye-polluted water.  相似文献   
9.
A selective and sensitive method for simultaneous determination of lead and cadmium by adsorptive differential pulse cathodic stripping voltammetry is presented. The method is based on adsorptive accumulation of the complexes of Pb (II) and Cd (II) ions with 2-mercaptobenzothiazole onto hanging mercury drop electrode (HMDE), followed by the reduction of the adsorbed species by differential pulse cathodic stripping voltammetry. Optimal conditions were obtained at pH 8.0, 2-mercaptobenzothiazole concentration of 1.0 × 10−4 M, the accumulation potential of −0.4 V (vs. Ag/AgCl), the accumulation time of 160 s, and the scan rate of 100 mV/s. Under optimised conditions, linear calibration curves were established for the concentration of Pb (II) and Cd (II) in the range of 0.5–70 and 0.2–30 ng/ml, respectively, with detection limit of 0.017 ng/ml for Pb (II) and 0.01 ng/ml for Cd (II). The procedure was successfully applied to the simultaneous determination of both ions in food samples (rice, soya and sugar).  相似文献   
10.
Journal of Porous Materials - Compared with traditional battery and super capacitor materials, nanomaterials can significantly improve ion transport and electron conductivity. There are many...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号