首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   1篇
电工技术   2篇
化学工业   13篇
机械仪表   5篇
建筑科学   1篇
轻工业   1篇
无线电   118篇
一般工业技术   12篇
冶金工业   9篇
自动化技术   4篇
  2024年   1篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   14篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2009年   6篇
  2008年   10篇
  2007年   7篇
  2006年   11篇
  2005年   8篇
  2004年   10篇
  2003年   5篇
  2002年   3篇
  2001年   9篇
  2000年   9篇
  1999年   7篇
  1998年   8篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1993年   4篇
  1986年   1篇
  1978年   3篇
  1976年   3篇
排序方式: 共有165条查询结果,搜索用时 0 毫秒
1.
The recent advancement in high- performance semiconductor packages has been driven by the need for higher pin count and superior heat dissipation. A one-piece cavity lid flip chip ball grid array (BGA) package with high pin count and targeted reliability has emerged as a popular choice. The flip chip technology can accommodate an I/O count of more than five hundreds500, and the die junction temperature can be reduced to a minimum level by a metal heat spreader attachment. None the less, greater expectations on these high-performance packages arose such as better substrate real estate utilization for multiple chips, ease in handling for thinner core substrates, and improved board- level solder joint reliability. A new design of the flip chip BGA package has been looked into for meeting such requirements. By encapsulating the flip chip with molding compound leaving the die top exposed, a planar top surface can be formed. A, and a flat lid can then be mounted on the planar mold/die top surface. In this manner the direct interaction of the metal lid with the substrate can be removed. The new package is thus less rigid under thermal loading and solder joint reliability enhancement is expected. This paper discusses the process development of the new package and its advantages for improved solder joint fatigue life, and being a multichip package and thin core substrate options. Finite-element simulations have been employed for the study of its structural integrity, thermal, and electrical performances. Detailed package and board-level reliability test results will also be reported  相似文献   
2.
3.
The kinetics of polymerization of ?‐caprolactone (CL) in bulk was studied by irradiating with microwave of 350 W and frequency of 2.45 GHz with different cycle‐heating periods (30–50 s). The molecular weight distributions were determined as a function of reaction time by gel permeation chromatography. Because the temperature of the system continuously varied with reaction time, a model based on continuous distribution kinetics with time/temperature‐dependent rate coefficients was proposed. To quantify the effect of microwave on polymerization, experiments were conducted under thermal heating. The polymerization was also investigated with thermal and microwave heating in the presence of zinc catalyst. The activation energies determined from temperature‐dependent rate coefficients for pure thermal heating, thermally aided catalytic polymerization, and microwave‐aided catalytic polymerization were 24.3, 13.4, and 5.7 kcal/mol, respectively. This indicates that microwaves increase the polymerization rate by lowering the activation energy. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1450–1456, 2004  相似文献   
4.
Foley catheters are inevitable in health care unit. Pathogens colonise and form biofilm on catheter causing catheter‐associated urinary tract infection. Therefore, the authors aimed to functionalise catheter to resist biofilm formation. The authors impregnated urinary catheters with a synergistic combination of antibiotics and silver nanoparticles (SNPs) to evaluate antibiofilm efficacy in vitro and in vivo. SNPs were synthesised using Spirulina platensis. Synergy between the SNPs and antibiotics was determined by the checker‐board method. In vivo efficacy of the functionalised catheters was assessed in mice. Liver and kidney function tests of mice were performed. The in vitro anti‐adherence activity of the functionalised catheters was evaluated after 2 years. Nanoparticle sizes were 42–75 nm. Synergistic activity was observed among SNPs (2 µg/ml), amikacin (6.25 µg/ml), and nitrofurantoin (31.25 µg/ml). In mice, catheters functionalised with combinations of antibiotics and SNPs exhibited no colonisation until Day 14. Blood, liver, and kidney tests were normal. After 2 years, catheters functionalised with antibiotics exhibited 25% inhibition of bacterial adhesion, and catheters functionalised with the nanoparticle‐antibiotic combination exhibited 90% inhibition. Impregnation of urinary catheters with a synergistic combination of antibiotics and SNPs is an efficient and promising method for preventing biofilm formation.Inspec keywords: catheters, drugs, silver, nanoparticles, nanomedicine, liver, kidney, blood, microorganisms, adhesion, biomechanics, cellular biophysicsOther keywords: Foley catheters, synergistic nanoparticle‐antibiotics combination, silver nanoparticles, biofilm formation resitance, health care unit, pathogens, urinary tract infection, SNP, Spirulina platensis, checker‐board method, liver function, kidney function, vitro antiadherence activity, amikacin, nitrofurantoin, blood, bacterial adhesion, size 42 nm to 75 nm, Ag  相似文献   
5.
Single-crystalline CdTe(133) films have been grown by metalorganic chemical vapor deposition on Si(211) substrates. We studied the effect of various growth parameters on the surface morphology and structural quality of CdTe films. Proper oxide removal from the Si substrate is considered to be the principal factor that influences both the morphology and epitaxial quality of the CdTe films. In order to obtain single-crystalline CdTe(133) films, a two-stage growth method was used, i.e., a low-temperature buffer layer step and a high- temperature growth step. Even when the low-temperature buffer layer shows polycrystalline structure, the overgrown layer shows single-crystalline structure. During the subsequent high-temperature growth, two-dimensional crystallites grow faster than other, randomly distributed crystallites in the buffer layer. This is because the capturing of adatoms by steps occurs more easily due to increased adatom mobility. From the viewpoint of crystallographic orientation, it is assumed that the surface structure of Si(211) consists of (111) terrace and (100) step planes with an interplanar angle of 54.8°. This surface structure may provide many preferable nucleation sites for adatoms compared with nominally flat Si(100) or (111) surfaces. The surface morphology of the resulting films shows macroscopic rectangular-shaped terrace—step structures that are considered to be a (111) terrace with two {112} step planes directed toward 〈110〉.  相似文献   
6.
The capability of growing state-of-the-art middle wavelength infrared (MWIR)-HgCdTe layers by molecular beam epitaxy (MBE) on large area silicon substrates has been demonstrated. We have obtained excellent compositional uniformity with standard deviation of 0.001 with mean composition of 0.321 across 1.5″ radii. R0A as high as 5 × 107 ω-cm2 with a mean value of 7 × 106 Θ-cm2 was measured for cut-off wavelength of 4.8 μm at 77K. Devices exhibit diffusion limited performance for temperatures above 95K. Quantum efficiencies up to 63% were observed (with no anti-reflection coating) for cut-off wavelength (4.8–5.4) μm @ 77K. Excellent performance of the fabricated photodiodes on MBE HgCdTe/CdTe/Si reflects on the overall quality of the grown material in the MWIR region.  相似文献   
7.

In this investigation, an attempt has been made to study by varying the charge temperature on the ethanol fueled Homogeneous charge compression ignition (HCCI) combustion engine. Ethanol was injected into the intake manifold by using port fuel injection technique while the intake air was heated for achieving stable HCCI operation. The effect of intake air temperature on the combustion, performance, and emissions of the ethanol HCCI operation was compared with the standard diesel operation and presented. The results indicate that the intake air temperature has a significant impact on in-cylinder pressure, ringing intensity, combustion efficiency, thermal efficiency and emissions. At 170°C, the maximum value of combustion efficiency and brake thermal efficiency of ethanol are found to be 98.2% and 43%, respectively. The NO emission is found to be below 11 ppm while the smoke emission is negligible. However, the UHC and CO emissions are higher for the HCCI operation.

  相似文献   
8.
9.
Energy efficiency is an important issue in mobile wireless networks since the battery life of mobile terminals is limited. Conservation of battery power has been addressed using many techniques such as variable speed CPUs, flash memory, disk spindowns, and so on. We believe that energy conservation should be an important factor in the design of networking protocols for mobile wireless networks. In particular, this paper addresses energy efficiency in medium access control (MAC) protocols for wireless networks. The paper develops a framework to study the energy consumption of a MAC protocol from the transceiver usage perspective. This framework is then applied to compare the performance of a set of protocols that includes IEEE 802.11, ECMAC, PRMA, MDRTDMA, and DQRUMA*. The performance metrics considered are transmitter and receiver usage times for packet transmission and reception. The time estimates are then combined with power ratings for a Proxim RangeLAN2 radio card to obtain an estimate of the energy consumed for MAC related activities. The analysis here shows that protocols that aim to reduce the number of contentions perform better from an energy consumption perspective. The receiver usage time, however, tends to be higher for protocols that require the mobile to sense the medium before attempting transmission. The paper also provides a set of principles that could be applied when designing access protocols for wireless networks.*ECMAC: energyconserving MAC. PRMA: packet reservation multiple access. MDRTDMA: multiservices dynamic reservation TDMA. DQRUMA: distributedqueuing request update multiple access.  相似文献   
10.
The p-type doping of Hg1−xCdxTe (MCT) has proven to be a significant challenge in present day MCT-based detector technology. One of the most promising acceptor candidates, arsenic, behaves as an amphoteric dopant which can be activated as an acceptor during Hg-rich, low temperature annealing of as-grown molecular beam epitaxy (MBE) samples. This study focuses on developing an understanding of the microscopic behavior of arsenic incorporation during MBE growth. In particular, the question of whether arsenic incorporates as individual As atoms, as As2 dimers, or as As4 tetramers is addressed for MBE growth with an As4 source. A quasithermodynamical model is employed to describe the MCT growth and As incorporation, with parameters fitted to an extensive database of samples grown at the Microphysics Laboratory. The best fits for growth temperatures between 175 and 185°C are obtained for arsenic incorporation as As4 or possibly as As4 clusters, with lower probabilities for As2 and individual As atoms. Based on these results, we investigate the relaxed atomic configurations of As4 and As2 in bulk HgTe by ab initio total energy calculations. The calculations are performed in the pseudopotential density-functional framework within the local density approximation, employing supercells with periodic boundary conditions. The lattice distortions due to As4 and As2 in bulk HgTe are predicted to be modest due to the small size of these arsenic clusters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号