首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
机械仪表   1篇
无线电   19篇
冶金工业   3篇
自动化技术   4篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
A new rotation-invariant texture-analysis technique using Radon and wavelet transforms is proposed. This technique utilizes the Radon transform to convert the rotation to translation and then applies a translation-invariant wavelet transform to the result to extract texture features. A kappa-nearest neighbors classifier is employed to classify texture patterns. A method to find the optimal number of projections for the Radon transform is proposed. It is shown that the extracted features generate an efficient orthogonal feature space. It is also shown that the proposed features extract both of the local and directional information of the texture patterns. The proposed method is robust to additive white noise as a result of summing pixel values to generate projections in the Radon transform step. To test and evaluate the method, we employed several sets of textures along with different wavelet bases. Experimental results show the superiority of the proposed method and its robustness to additive white noise in comparison with some recent texture-analysis methods.  相似文献   
2.
The paper presents a multidimensional nonlinear edge-preserving filter for restoration and enhancement of magnetic resonance images (MRI). The filter uses both interframe (parametric or temporal) and intraframe (spatial) information to filter the additive noise from an MRI scene sequence. It combines the approximate maximum likelihood (equivalently, least squares) estimate of the interframe pixels, using MRI signal models, with a trimmed spatial smoothing algorithm, using a Euclidean distance discriminator to preserve partial volume and edge information. (Partial volume information is generated from voxels containing a mixture of different tissues.) Since the filter's structure is parallel, its implementation on a parallel processing computer is straightforward. Details of the filter implementation for a sequence of four multiple spin-echo images is explained, and the effects of filter parameters (neighborhood size and threshold value) on the computation time and performance of the filter is discussed. The filter is applied to MRI simulation and brain studies, serving as a preprocessing procedure for the eigenimage filter. (The eigenimage filter generates a composite image in which a feature of interest is segmented from the surrounding interfering features.) It outperforms conventional pre and post-processing filters, including spatial smoothing, low-pass filtering with a Gaussian kernel, median filtering, and combined vector median with average filtering.  相似文献   
3.
An adaptive spatial filtering method is proposed that takes into account contextual information in fMRI activation detection. This filter replaces the time series of each voxel with a weighted average of time series of a small neighborhood around it. The filter coefficients at each voxel are derived so as to maximize a test statistic designed to indicate the presence of activation. This statistic is the ratio of the energy of the filtered time series in a signal subspace to the energy of the residuals. It is shown that the filter coefficients and the maximum energy ratio can be found through a generalized eigenproblem. This approach equates the filter coefficients to the elements of an eigenvector corresponding to the largest eigenvalue of a specific matrix, while the largest eigenvalue itself becomes the maximum energy ratio that can be used as a statistic for detecting activation. The distribution of this statistic under the null hypothesis is derived by a nonparametric permutation technique in the wavelet domain. Also, in this paper we introduce a new set of basis vectors that define the signal subspace. The space spanned by these basis vectors covers a wide range of possible hemodynamic response functions (HRF) and is applicable to both event related and block design fMRI signal analysis. This approach circumvents the need for a priori assumptions about the exact shape of the HRF. Resting-state experimental fMRI data were used to assess the specificity of the method, showing that the actual false-alarm rate of the proposed method is equal or less than its expected value. Analysis of simulated data and motor task fMRI datasets from six volunteers using the method proposed here showed an improved sensitivity as compared to a conventional test with a similar statistic applied to spatially smoothed data.  相似文献   
4.
A new method is proposed for activation detection in event-related functional magnetic resonance imaging (fMRI). The method is based on the analysis of selected resolution levels (a subspace) in translation invariant wavelet transform (TIWT) domain. Using a priori knowledge about the activation signal and trends, we analyze their power in different resolution levels in TIWT domain and select an optimal set of resolution levels. A randomization-based statistical test is then applied in the wavelet domain for activation detection. This approach suppresses the effects of trends and enhances the detection sensitivity. In addition, since TIWT is insensitive to signal translations, the power analysis is robust with respect to signal shifts. The randomization test alleviates the need for assumptions about fMRI noise. The method has been applied to simulated and experimental fMRI datasets. Comparisons have been made between the results of the proposed method, a similar method in the time domain and the cross-correlation method. The proposed method has shown superior sensitivity compared to the other methods.  相似文献   
5.
This paper presents a new approach to rotation invariant texture classification. The proposed approach benefits from the fact that most of the texture patterns either have directionality (anisotropic textures) or are not with a specific direction (isotropic textures). The wavelet energy features of the directional textures change significantly when the image is rotated. However, for the isotropic images, the wavelet features are not sensitive to rotation. Therefore, for the directional textures, it is essential to calculate the wavelet features along a specific direction. In the proposed approach, the Radon transform is first employed to detect the principal direction of the texture. Then, the texture is rotated to place its principal direction at 0 degrees. A wavelet transform is applied to the rotated image to extract texture features. This approach provides a features space with small intraclass variability and, therefore, good separation between different classes. The performance of the method is evaluated using three texture sets. Experimental results show the superiority of the proposed approach compared with some existing methods.  相似文献   
6.
We have designed and implemented a human brain multi-modality database system with content-based image management, navigation and retrieval support for epilepsy. The system consists of several modules including a database backbone, brain structure identification and localization, segmentation, registration, visual feature extraction, clustering/classification and query modules. Our newly developed anatomical landmark localization and brain structure identification method facilitates navigation through an image data and extracts useful information for segmentation, registration and query modules. The database stores T1-, T2-weighted and FLAIR MRI and ictal/interictal SPECT modalities with associated clinical data. We confine the visual feature extractors within anatomical structures to support semantically rich content-based procedures. The proposed system serves as a research tool to evaluate a vast number of hypotheses regarding the condition such as resection of the hippocampus with a relatively small volume and high average signal intensity on FLAIR. Once the database is populated, using data mining tools, partially invisible correlations between different modalities of data, modeled in database schema, can be discovered. The design and implementation aspects of the proposed system are the main focus of this paper.  相似文献   
7.
In this paper, we study temporal couplings between interictal events of spatially remote regions in order to localize the leading epileptic regions from intracerebral EEG (iEEG). We aim to assess whether quantitative epileptic graph analysis during interictal period may be helpful to predict the seizure onset zone of ictal iEEG. Using wavelet transform, cross-correlation coefficient, and multiple hypothesis test, we propose a differential connectivity graph (DCG) to represent the connections that change significantly between epileptic and nonepileptic states as defined by the interictal events. Postprocessings based on mutual information and multiobjective optimization are proposed to localize the leading epileptic regions through DCG. The suggested approach is applied on iEEG recordings of five patients suffering from focal epilepsy. Quantitative comparisons of the proposed epileptic regions within ictal onset zones detected by visual inspection and using electrically stimulated seizures, reveal good performance of the present method.  相似文献   
8.
Optimal linear transformation for MRI feature extraction   总被引:2,自引:0,他引:2  
This paper presents development and application of a feature extraction method for magnetic resonance imaging (MRI), without explicit calculation of tissue parameters. A three-dimensional (3-D) feature space representation of the data is generated in which normal tissues are clustered around prespecified target positions and abnormalities are clustered elsewhere. This is accomplished by a linear minimum mean square error transformation of categorical data to target positions. From the 3-D histogram (cluster plot) of the transformed data, clusters are identified and regions of interest (ROI's) for normal and abnormal tissues are defined. These ROI's are used to estimate signature (prototype) vectors for each tissue type which in turn are used to segment the MRI scene. The proposed feature space is compared to those generated by tissue-parameter-weighted images, principal component images, and angle images, demonstrating its superiority for feature extraction and scene segmentation. Its relationship with discriminant analysis is discussed. The method and its performance are illustrated using a computer simulation and MRI images of an egg phantom and a human brain.  相似文献   
9.
This paper reports the effect of the coupling information on the performance of model-based segmentation of the brain structures from magnetic resonance images (MRI). We have developed a three-dimensional, nonparametric, entropy-based, and multi-shape method that benefits from coupling of the shapes. The proposed method uses principal component analysis (PCA) to develop shape models that capture structural variability and integrates geometrical relationship among different structures into the algorithm by coupling them (limiting their independent deformations). At the same time, to allow variations of the coupled structures, it registers each structure individually when building the shape models. It defines an entropy-based energy function which is minimized using quasi-Newton algorithm. Probability density functions (pdf) are estimated iteratively using nonparametric Parzen window method. In the optimization algorithm, analytical derivatives are used for maximum speed and accuracy. Sample results are given for the segmentation of caudate, thalamus, putamen, pallidum, hippocampus, and amygdala illustrating superior performance of the proposed method compared to the most similar method in the literature. The similarity of the results obtained by the proposed method with the expert segmentation is 4% to 12% higher than that of the most similar method. Experimental studies show that the proposed coupling method, which regulates shape variability during segmentation, improves accuracy of the results of the proposed method by 6% and those of the other method by 1%. In addition, the more the structures are used in the coupling process, the more accurate the results are obtained.  相似文献   
10.
We introduce a bottom-up model for integrating electroencephalography (EEG) or magnetoencephalography (MEG) with functional magnetic resonance imaging (fMRI). An extended neural mass model is proposed based on the physiological principles of cortical minicolumns and their connections. The fMRI signal is extracted from the proposed neural mass model by introducing a relationship between the stimulus and the neural activity and using the resultant neural activity as input of the extended Balloon model. The proposed model, validated using simulations, is instrumental in evaluating the upcoming combined methods for simultaneous analysis of MEG/EEG and fMRI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号