首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
  国内免费   1篇
电工技术   3篇
化学工业   7篇
机械仪表   1篇
能源动力   2篇
水利工程   1篇
无线电   10篇
一般工业技术   5篇
冶金工业   3篇
自动化技术   10篇
  2023年   3篇
  2022年   8篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   4篇
  2016年   7篇
  2015年   1篇
  2013年   3篇
  2010年   2篇
  2008年   4篇
  2007年   2篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
In the recent sub-20 nm technology node, the process variability issues have become a major problem for scaling of MOS devices. We present a design for a strained Si/SiGe FinFET on an insulator using a 3D TCAD simulator. The impact of metal gate work function variability (WFV) on electrical parameters is studied. Such impact of WFV for different mole fractions (x) of the SiGe layer in a strained SOI-FinFET with varying grain size is presented. The results show that as the mole fraction is increased, the variability in threshold voltage (σVT) and off current (σIoff) is decreased; while, the variability of on-current (σIon) is increased. A notable observation is the distribution of electrical parameters approaches a normal distribution for smaller grain sizes.  相似文献   
2.
A detailed regional drought study is carried out in the southern peninsula of India to characterize the spatio-temporal nature of droughts and to predict the drought magnitudes for various probabilities in the homogeneous drought regions. The method of several random initializations of the cluster centres of the K-means algorithm is suggested for the identification of the initial regions in the context of drought regionalization, which is shown to perform better than the initialization from the Ward’s algorithm and the Ward’s algorithm itself. The peninsula is classified into seven spatially well-separated homogeneous drought regions. The robust L-moment framework is used for the regional frequency analysis of drought magnitudes computed using the standardized precipitation index. The Pearson type III is found to be appropriate for regional drought frequency analysis in six of the regions, while the robust Wakeby distribution is suggested for one region. Low magnitude droughts are frequent and dominant in the northern part of west coast, the north-eastern coast and its adjoining inland region, while high magnitude droughts are less in number and are experienced in semi-arid central part, southern part of western coast, south-eastern part and north-western inland region. The spatial maps of drought magnitudes indicate that at higher return periods (100 and 200 years) the south-eastern part of the peninsula is likely to encounter high magnitude droughts, while the central region is likely to experience the same at lower return periods (10 and 50 years). Hence these regions need to be given special importance in the drought mitigation planning activities.  相似文献   
3.
Wireless Personal Communications - The performance of wireless communication network is important in emergency rescue operations while ensuring optimum usage of limited wireless resources. Due to...  相似文献   
4.
This paper addresses the issue of fault estimation and accommodation for a discrete‐time switched system with actuator faults. Here, we assume that the sojourn probabilities are known a priori. By using the reduced‐order observer method, the sojourn probability approach, and the Lyapunov technique, a fault estimation algorithm is obtained for the considered system. The main objective of this work is to design a dynamic output feedback fault‐tolerant controller based on the obtained fault estimation information such that the closed‐loop discrete‐time switched system with available sojourn probabilities is robustly mean‐square stable and satisfies a prescribed mixed and passivity disturbance attenuation level in the presence of actuator faults. More precisely, a dynamic output feedback fault‐tolerant controller is established in terms of linear matrix inequalities. Finally, numerical examples are provided to illustrate the usefulness and effectiveness of the proposed design technique.  相似文献   
5.
Hydrogen production from glucose using a mixed anaerobic culture was assessed under batch conditions by adjusting the initial pH and adding linoleic acid (LA). At an initial pH of 5.0, hydrogen (1.9?mol?H2?mol?1 glucose) was detected after the first glucose injection in the controls (no LA added). At the latter initial pH and in cultures fed 2,000?mg?l?1 LA, the yield reached a maximum of 2.4?mol?H2?mol?1 glucose when glucose was injected again. Hydrogen was detected after the second glucose injection in cultures with the initial pH adjusted to 5.0 and 6.0. In cultures receiving LA and adjusted to pH 7.6, the hydrogen yield reached 1.4?mol?H2?mol?1 glucose when glucose was injected again. Acetate, propionate, and butyrate were detected under all conditions; however, the quantities were variable and dependent on the conditions examined. In comparison to the amount of volatile fatty acids produced, relatively low quantities of alcohols (ethanol, i-propanol, n-butanol, and i-butanol) were detected during the initial lag phase of 96?to?120?h.  相似文献   
6.
This paper addresses the problem of robust \(L_2{-}L_\infty \) control in delta domain for a class of Takagi–Sugeno (TS) fuzzy systems with interval time-varying delays and disturbance input. In particular, the system under study involves state time delay, uncertainties and fast sampling period \(\mathcal {T}\). The main aim of this work was to design a \(L_2{-}L_\infty \) controller such that the proposed TS fuzzy system is robustly asymptotically stable with a \(L_2{-}L_\infty \) prescribed performance level \(\gamma >0\). Based on the proper Lyapunov–Krasovskii functional (LKF) involving lower and upper bound of time delay and free-weighting technique, a new set of delay-dependent sufficient conditions in terms of linear matrix inequalities (LMIs) are established for obtaining the required result. The result reveals that the asymptotic stability is achieved quickly when the sampling frequency is high. Finally, a numerical example based on the truck–trailer model is given to demonstrate the effectiveness and potential of the proposed design technique.  相似文献   
7.
Optimizing the hydrogen (H2) yield at several initial pH conditions in a mixed batch anaerobic mesophilic culture fed with glucose and linoleic acid (LA) was performed using a three factor three level Box–Benkhen design (BBD). Based on the BBD approach, a statistical model was developed to predict the H2 yield. The variables considered for the experimental design were the LA concentration, the initial pH and the number of times glucose was added to the culture. The D-optimality method predicted a maximum H2 yield of 3.49 mol H2 mol glucose−1 for cultures fed 1.9 g l−1 LA, maintained at an initial pH of 5.15 and received 1.79 glucose additions. The response outcome (H2 yield of 3.38 ± 0.22 mol mol glucose−1) at the nearest setting of the experimental factors (2.0 g l−1 LA, an initial pH of 5.0 and two glucose additions) was 3.3% less than the predicted maximum value. The model provides a useful approach for predicting H2 production when H2 consumers are inhibited in mixed batch anaerobic cultures.  相似文献   
8.
In this article, a pocket doped hetero‐stacked L‐shaped gate silicon‐on‐insulator (SOI) tunnel FET (HS‐LG‐TFET) has been proposed and investigated. The band‐to‐band tunneling (BTBT) feature of LG‐TFET in a direction perpendicular to the channel facilitates higher ON current due to relatively larger tunneling area. The channel appears to be U‐shaped that is primarily distributed along the vertical direction, which increases the device scalability. Besides, the HS source architecture owns an upper source layer, which consists of larger bandgap material silicon and an underlying source layer, which consists of smaller bandgap material germanium. This underlying layer of smaller bandgap material in HS‐LG‐TFET provides enhanced ON current as well as steeper subthreshold swing behavior. The electrical noise behavior of the proposed structure is addressed to test its viability. Furthermore, a complete radio frequency (RF) characterization, including transconductance, capacitances, cutoff frequency, gain bandwidth product, maximum oscillation frequency, transit time, and minimum noise figure of the proposed device are analyzed to examine its analog applicability. Moreover, for checking the reliability issues associated with temperature, the temperature dependence on transfer and RF characteristics are also explored and presented. Further, the non‐quasi‐static equivalent circuit of the proposed structure is presented to analyze its behavior in the high frequency range.  相似文献   
9.
The effect of viscous dissipation on mixed convection boundary layer flow for Ag‐water nanofluid under steady‐state condition has been studied numerically for both the buoyancy assisting and opposing flows over a vertical semi‐infinite flat plate. A new co‐ordinate system has been introduced to transform the governing partial differential equations (PDEs) to facilitate the numerical calculations. Then, the local similarity method has been used for approximating the transformed PDEs to ordinary differential equations. Further, the quasi‐linearization method has been introduced to linearize the nonlinear equations and then numerical integration has been carried out using implicit trapezoidal rule along with the principle of superposition. For higher Pr, the coupled differential equations behave like stiff differential equations. To overcome the situation, orthonormalization process has been introduced. The effects of solid volume fraction of nanoparticles , the mixed convection parameter , Prandtl number , and Eckart number have been analyzed on the heat transfer and flow characteristics. It has been observed that the dual solutions are obtained for buoyancy opposing flow only and the range of dual solutions have become wider with the increases in . Further, nanofluids enhance the heat transfer process as compared to conventional heat transfer fluids . Moreover, the addition of viscous dissipation causes less heat transfer in the boundary.  相似文献   
10.
This article investigates the impact of the p–p+ junction (at the body-substrate interface) on different direct current (DC) and analog/radio frequency (RF) performance parameters of a newly invented structure called vertical super-thin body field effect transistor (VSTB FET) through a well-calibrated TCAD tool. At a fixed body doping, the influence of p–p+ junction was inspected for different substrate doping (Ns); which reveals that Ns has a robust control on the device electrostatics. Interestingly, higher Ns is seen to significantly suppress different short channel effects (SCEs), which in turn helps to improve various DC parameters excellently. An increase in Ns from 1015 to 1018 cm?3 improves off-state leakage current and on-to-off current ratio by three orders of magnitude. Also, such a change in Ns decreases subthreshold swing and drain-induced-barrier-lowering by 8.78 mV/dec and 11.15 mV/V, respectively. The underlying physics behind such improvement at higher Ns is explored through the off-state channel electron density profiles corresponding to different Ns values. Further, different analog/RF parameters such as transconductance, input capacitance, gate-drain capacitance, output conductance, gain-bandwidth-product, and transconductance frequency product (TFP) show slight improvement for increasing Ns. In contrast, TGF, GFP, and GTFP offer large enhancement at higher Ns. This study is expected to demonstrate the significance of Ns on device performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号