首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学工业   1篇
能源动力   2篇
无线电   5篇
  2021年   2篇
  2020年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2004年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The influence of dietary Tetracarpidium conophorum (African Walnut) seed meal (TCSM) on fatty acids, productivity parameters, and physicochemical properties of breast and thigh muscles in broiler chickens are assessed. A total of 180, 28‐d‐old Arbor acre broiler chickens are randomly assigned to dietary treatments containing 0% (control), 2.5%, and 5% w/w TCSM, fed for 28 d, and euthanized. Dietary TCSM reduces (p < 0.05) feed intake, body weight gain (BWG), carcass weight, and abdominal fat. Diet does not affect feed efficiency and hematological parameters. The control birds have higher (p < 0.05) serum total cholesterol and triglycerides than do the supplemented birds. Diet has no effect on pH, water holding capacity, carbonyl and malondialdehyde contents, and organoleptic properties of breast and thigh muscles. The 5% TCSM has higher redness in breast muscle than do other treatments. Dietary TCSM improves (p < 0.05) the concentration of C18:3n‐3 (4.80–8.76% vs 1.56%), C20:5n‐3 (0.54–0.79% vs 0.39%), C22:5n‐3 (0.64–0.89% vs 0.18%), and C22:6n‐3 (0.75–0.97% vs 0.19%), and reduces (p <  0.05) the fat content (2.15–2.45% vs 3.15%) in breast and thigh muscles. Dietary TCSM enhances muscle n‐3 fatty acids without instigating oxidative deterioration, but reduces BWG in broiler chickens. Practical Application: Albeit that broiler meat is rich in polyunsaturated fatty acids (PUFA), its omega 6 (n‐6)/omega 3 (n‐3) is >4. Elevated n‐6/n‐3 could have adverse effect on human physiology thereby promoting the pathogenesis of certain diseases. This heightens the need to enhance the n‐3 PUFA content of broiler meat. Dietary TCSM induced up to a fourfold increase in n‐3 PUFA content of the breast and thigh muscles in broiler chickens. Moreover, dietary TCSM induced up to a tenfold decrease in the n‐6/n‐3 of the breast and thigh muscles in broiler chickens. This finding assumes great significance because the health concerns regarding dietary fat are the foremost factors responsible for the bad image suffered by meat. These results provide insights on the potential of TCSM to improve the nutritional quality without compromising the oxidative shelf life, organoleptic traits, and physicochemical properties of broiler meat.  相似文献   
2.
This letter proposes an adaptive beamforming algorithm for uplink access in broadband wireless networks employing orthogonal frequency-division multiplexing with spacedivision multiple access (OFDM-SDMA) technologies. The proposed algorithm seeks, iteratively, the optimal transmit weight vectors that directly maximize the OFDM-SDMA channel capacity for each user in the system, using gradient search of the channel capacity. The analysis and simulation show that the capacity of OFDM-SDMA systems with the transmit weights obtained using the proposed adaptive beamforming algorithm is substantially higher than the one based on conventional approaches such as eigen-beamforming.  相似文献   
3.
The demand for higher data rate has spurred the adoption of multiple‐input multiple‐output (MIMO) transmission techniques in IEEE 802.11 products. MIMO techniques provide an additional spatial dimension that can significantly increase the channel capacity. A number of multiuser MIMO system have been proposed, where the multiple antenna at the physical layer are employed for multiuser access, allowing multiple users to share the same bandwidth. As these MIMO physical layer technologies further evolve, the usable bandwidth per application increases; hence, the average service time per application decreases. However, in the IEEE 802.11 distributed coordination function‐based systems, a considerable amount of bandwidth is wasted during the medium access and coordination process. Therefore, as the usable bandwidth is enhanced using MIMO technology, the bandwidth wastage of medium access and coordination becomes a significant performance bottleneck. Hence, there is a fundamental need for bandwidth sharing schemes at the medium access control (MAC) layer where multiple connections can concurrently use the increased bandwidth provided by the physical layer MIMO technologies. In this paper, we propose the MIMO‐aware rate splitting (MRS) MAC protocol and examine its behavior under different scenarios. MRS is a distributed MAC protocol where nodes locally cooperate with one another to share bandwidth via splitting the spatial channels of MIMO systems. Simulation results of MRS protocol are obtained and compared with those of IEEE 802.11n protocol. We show that our proposed MRS scheme can significantly outperform the IEEE 802.11n in medium access delay and throughput. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
5.
High-speed satellite mobile communications: technologies and challenges   总被引:12,自引:0,他引:12  
Central features of future 4G mobile communication systems are high-speed data transmission (up to 1 Gb/s) and interactive multimedia services. For effective delivery of these services, the network must satisfy some stringent QoS metrics, defined typically in terms of maximum delay and/or minimum throughput. Mobile satellite systems will be fully integrated with the terrestrial cellular systems to provide ubiquitous global coverage to diverse users. The challenges for future broadband satellite systems, therefore, lie in the proper deployment of state-of-the-art satellite technologies to ensure seamless integration of the satellite networks into the cellular systems and its QoS frameworks, while achieving, as far as possible, efficient use of satellite link resources. The paper presents an overview of future high-speed satellite mobile communication systems, the technologies deployed or planned for deployment, and the challenges. Focusing in particular on nonlinear downlink channel behavior, shadowing and multipath fading, various physical channel models for characterizing the mobile satellite systems are presented. The most prominent technologies used in the physical layer, such as coding and modulation schemes, multiple-access techniques, diversity combining, etc., are then discussed in the context of satellite systems. High-speed and QoS-specific technologies, such as onboard processing and switching, mobility and resource management, IP routing and cross-layer designs, employed in the satellite systems are also discussed.  相似文献   
6.
Motivated by enrobing processes in manufacturing technology with intelligent coatings, this study analyses the flow of an electroconductive incompressible nanofluid with heat distribution in a boundary layer containing metallic nanoparticles or ferroparticles along an extending cylindrical body with magnetic induction effects. The quasilinear boundary conditions for the partial derivative formulations connecting to the far stream and cylinder wall are converted to ordinary nonlinear derivatives by applying appropriate similarity transformations. The emerging system of derivatives is solved by a stable, efficient spectral relaxation method (SRM). The SRM procedure is benchmarked with special limiting cases in the literature and found to corroborate exceptionally well with other studies in the literature. Here, water is taken as the base liquid containing homogenously suspended nonmagnetic (Nimonic 80a, silicon dioxide [SiO2]) or magnetic nanoparticles (ferric oxide [Fe3O4] and manganese franklinite [Mn–ZnFe2O4]). The influence of all key parameters on the velocity and temperature distributions is displayed in graphs and tables with extensive elucidation. The wall local drag force (skin friction) and local temperature gradient (Nusselt number) are also visualized graphically for various parameters. The rate of convergence of the SRM convergence is compared with that of the successive over-relaxation method, and it is observed to converge faster. Larger magnetohydrodynamic body force parameter and inverse Prandtl magnetic number induce flow deceleration and enhance temperature. Flow acceleration is computed for SiO2 nonmagnetic nanoparticles, and good heat conduction augmentation is produced with magnetic nanoparticle Fe3O4.  相似文献   
7.
In the current study, a mathematical formulation is developed by combining the non-Newtonian (Casson) fluid model to simulate the thermosolutal free convection radiative flow over a vertical surface. The current flow model is formulated with a heat sink/source and radiation driven by Arrhenius kinetics. The basic flow equations are transmuted into a nondimensional form via similarity transformations for which numerical simulations are performed utilizing the Runge-Kutta-Fehlberg method with shooting technique. The results obtained for velocity, energy, and species mass concerning various flow parameters are presented graphically. Computed results for skin friction, Nusselt number, and Sherwood number are tabulated. The results have been verified for limited cases by comparing with various investigations, revealing excellent accuracy. The detailed geometry reveals that an increase in the activation energy enhances the flow velocity and heat transport in the Casson fluid system due to exothermic heat reaction. With the increase of the Frank-Kamenetskii term, there is a substantial rise in temperature distribution and a decrease in concentration profiles due to high Arrhenius exothermic process, which revealed that the presence of Arrhenius kinetics is more effective to improve heat transportation phenomenon. Enhancement of the heat source/sink term completely boosts heat distribution. Rise in Radiation parameter, temperature field increases by reducing heat dissipation to the ambient.  相似文献   
8.
This paper analyzes the bit error rate performance of orthogonal frequency‐division multiplexing systems in mobile multihop relaying channels. We considered the uplink scenario and quantified the effects of mobile channel impairments such as Doppler shift due to user mobility per hop, high power amplifier distortions when amplifying the transmitted/relayed orthogonal frequency‐division multiplexing symbol per hop, and the cumulative effects of these impairments on multihop relaying channels. It was shown that the resulting intercarrier interference due to the cumulative effects of the phase noise generated by these impairments per hop becomes very significant in a multihop relaying communication system and severely degrades the bit error rate performance of the system. Simulation results agree well with and validate the analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号