首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   0篇
无线电   45篇
自动化技术   12篇
  2013年   3篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
排序方式: 共有57条查询结果,搜索用时 31 毫秒
1.
A virtual circuit network with arbitrary topology is considered. The traffic streams follow prespecified routes, different in general for each stream, to reach their destination. A fluid traffic model is adopted and a processor sharing service discipline is considered. A policy is proposed for setting adaptively the fractions of the transmission capacity, which is allocated to the different traffic streams in the processor sharing discipline at each link. The amount of traffic arrived at the originating node of each link is measured for each stream. The fraction of the link capacity allocated to each stream is set to be proportional to the measured traffic. The traffic is measured continuously and the fractions are updated regularly based on the most recent traffic measurements. It is shown that eventually, the transmission capacity allocated to each stream converges to a quantity proportional to the average rate of the stream. Hence, if the capacity condition is satisfied, sufficient fractions of the capacity are allocated at each link for each stream. End-to-end performance guarantees are provided, if the traffic is regulated. The policy is distributed since each link adjusts the service fractions based on observations of the traffic arriving at its originating node only. Furthermore, it is adaptive since no information on the traffic characteristics is needed for the application of the policy  相似文献   
2.
Joint power control and beamforming schemes are proposed for cellular systems where adaptive arrays are used only at base stations. In the uplink, mobile power and receiver diversity combining vectors at the base stations are calculated jointly. The mobile transmitted power is minimized, while the signal-to-interference-and-noise ratio (SINR) at each link is maintained above a threshold. A transmit diversity scheme for the downlink is also proposed where the transmit weight vectors and downlink power allocations are jointly calculated such that the SINR at each mobile is above a target value. The proposed algorithm achieves a feasible solution for the downlink if there is one and minimizes the total transmitted power in the network. In a reciprocal network it can be implemented in a decentralized system, and it does not require global channel response measurements. In a nonreciprocal network, where the uplink and downlink channel responses are different, the proposed transmit beamforming algorithm needs to be implemented in a centralized system, and it requires a knowledge of the downlink channel responses. The performances of these algorithms are compared with previously proposed algorithms through numerical studies  相似文献   
3.
In wireless cellular networks or in other networks with single-hop communication, the fundamental access control problem pertains to access point (AP) selection and channel allocation for each user. For users in the coverage area of one AP, this involves only channel allocation. However, users that belong in the intersection of coverage areas of more than one AP can select the appropriate AP to establish connection and implicitly affect the channel assignment procedure. We address the joint problem of AP selection and channel assignment with the objective to satisfy a given user load vector with the minimum number of channels. Our major finding is that the joint problem reduces to plain channel allocation in a cellular network that emerges from the original one after executing an iterative and provably convergent clique load balancing algorithm. For linear cellular networks, our approach leads to minimum number of required channels to serve a given load vector. For 2D cellular networks, the same approach leads to a heuristic algorithm with a suboptimal solution due to the fact that clique loads cannot be balanced. Numerical results demonstrate the performance benefits of our approach in terms of blocking probability in a dynamic scenario with time-varying number of connection requests. The presented approach constitutes the basis for addressing more composite resource allocation problems in different context.  相似文献   
4.
The concept of tracking fluid policies by packetized policies is extended to input queueing switches. It is considered that the speedup of the switch is one. One of the interesting applications of the tracking policy in TDMA satellite switches is elaborated. For the special case of 2×2 switches, it is shown that a tracking nonanticipative policy always exists. It is found that, in general, nonanticipative policies do not exist for switches with more than two input and output ports. For the general case of N×N switches, a heuristic tracking policy is provided. The heuristic algorithm is based on two notions: port tracking and critical links. These notions can be employed in the derivation of other heuristic tracking policies as well. Simulation results show the usefulness of the heuristic algorithm and the two basic concepts it relies on  相似文献   
5.
We consider a loss system in which the connection arrival process is deterministically regulated (by leaky buckets for example) but is otherwise arbitrary. Bounds are found on connection blocking probabilities. These bounds are only in terms of the parameters of the traffic regulator, the common connection holding time distribution (which is not regulated in any way) and the server system itself  相似文献   
6.
In the near future, existing terrestrial radio networks are envisioned to integrate with satellite systems in order to provide global coverage. In order to establish communication for both nonhand-held and hand-held user terminals, the radio link design must allow full- and half-duplex operation, respectively, where the latter is desirable when radiation power restrictions are imposed. In addition, due to user mobility and wireless channel volatility, sophisticated resource management is required, so as to enhance system capacity. However, a major inherent problem of the satellite link is propagation delay, which may lead to inefficient resource allocation and reduced spectral efficiency. We address the resource allocation problem that arises in the context of a medium-Earth-orbit (MEO) satellite system with half-duplex communication capabilities. MEO satellite systems are characterized by large propagation delays and large intrabeam delay variations, which are shown to result in resource consumption. We propose a channel classification scheme, in which the available carriers are partitioned into classes and each class is associated with a range of propagation delays to the satellite. The suggested infrastructure results in better channel utilization and reduced call blocking rate and can be implemented with low signaling load  相似文献   
7.
During the last decade, Wireless Sensor Networks have emerged and matured at such point that they currently support several applications such as environment control, intelligent buildings, target tracking in battlefields. The vast majority of these applications require an optimization to the communication among the sensors so as to serve data in short latency and with minimal energy consumption. Cooperative data caching has been proposed as an effective and efficient technique to achieve these goals concurrently. The essence of these protocols is the selection of the sensor nodes which will take special roles in running the caching and request forwarding decisions. This article introduces two new metrics to aid in the selection of such nodes. Based on these metrics, we propose two new cooperative caching protocols, PCICC and scaPCICC, which are compared against the state-of-the-art competing protocol, namely NICoCa. The proposed solutions are evaluated extensively in an advanced simulation environment and the results confirm that the proposed caching mechanisms prevail over its competitor. The evaluation attests also that the best policy is always scaPCICC, achieving the shortest latency and the least number of transmitted messages.  相似文献   
8.
We investigate the behavior of the various transmission control protocol (TCP) algorithms over wireless links with correlated packet losses. For such a scenario, we show that the performance of NewReno is worse than the performance of Tahoe in many situations and even OldTahoe in a few situations because of the inefficient fast recovery method of NewReno. We also show that random loss leads to significant throughput deterioration when either the product of the square of the bandwidth-delay ratio and the loss probability when in the good state exceeds one, or the product of the bandwidth-delay ratio and the packet success probability when in the bad state is less than two. The performance of Sack is always seen to be the best and the most robust, thereby arguing for the implementation of TCP-Sack over the wireless channel. We also show that, under certain conditions, the performance depends not only on the bandwidth-delay product but also on the nature of timeout, coarse or fine. We have also investigated the effects of reducing the fast retransmit threshold.  相似文献   
9.
The problem of scheduling time-critical messages over a tree network is considered. Messages arrive at any of the nodes and have to reach the root node before their deadlines expire, else they are considered lost. The network is assumed to be operating in discrete time and the messages need one time unit for transmission from one node to the next along its path. The arrival and deadline processes are arbitrary. The policy which transmits messages with smallest extinction (arrival+deadline) time at every link is shown to minimize the number of lost messages over all time intervals and for every sample path  相似文献   
10.
Building on the concept of retransmission diversity, a class of collision resolution protocols, NDMA (network-assisted diversity multiple access) and BNDMA (blind NDMA), has been introduced recently for wireless packet multiple access. These protocols provide the means for improved performance compared with random access and splitting-based collision resolution protocols at a moderate receiver complexity cost. However, stability of these protocols has not been established, and the available steady-state analysis is restricted to symmetric (common-rate) systems. The stability region of (B)NDMA is formally analyzed. The tools used in the analysis range from a preliminary dominant system approach to the Foster-Lyapunov recurrence criterion and the (/spl sigma/, /spl rho/) deterministic fluid arrivals approach. It is rigorously established that the maximum stable throughput is close to 1. This is followed by a simpler and more general steady-state analysis, bypassing the earlier generating function approach, using instead only balance equations. This approach allows dealing with asymmetry (multirate systems), yielding expressions for throughput and delay per queue. Finally, we generalize BNDMA and the associated analysis to multicode systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号