首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
电工技术   10篇
无线电   2篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
This paper investigates the importance of a follow-on buried bare earth wire for the lightning protection of buried shielded cables. The use of follow-on bare wires for lightning protection of communication towers was suggested as a recommendation in certain standards, without being complemented either by theory or experiments. When lightning transients couple to the cable shields, it induces large currents (depending on the type of coupling) causing transient overvoltages between the inner conductors and the shield. It is shown by simulations based on multiconductor transmission line theory that if the follow-on bare earth conductor is placed in parallel with the shielded cable with the bare earth wire connected to the shield at the current injection end, then the shield current, and thereby, the internal transient voltages of the cable are reduced considerably.  相似文献   
2.
Estimation of electromagnetic (EM)-fleld emissions from broadband power-line communication systems (BPLC) is necessary, because at its operating frequencies, the radiated emissions from BPLC systems act as sources of interference/crosstalk to other radio-communication systems. Currently, the transmission-line (TL) system used for BPLC is complex, involving arbitrarily/irregularly distributed branched networks, arbitrary termination loads, varying line lengths, and line characteristic impedance. In order to study the electromagnetic-compatibility (EMC) issues associated with the radiated emissions of such complex BPLC networks, knowledge of current and voltage distributions along the length of the power-line channels is needed. This paper attempts to derive and present generalized expressions for either the current or voltage distribution along the line (whose TL parameters are known) between the transmitting and receiving ends for any line boundary condition and configuration based on the TL theory. The expressions presented in this paper could be beneficial for direct calculation of EM emissions from BPLC systems.  相似文献   
3.
The power-line infrastructure has been identified as an efficient system suitable for broadband power-line communication (BPLC) to connect and control various end users. However, the network is affected by stochastic attenuations due to the number of interconnected branches, their line lengths, associated terminal loads, etc. There is yet another parameter that could influence the above stated attenuations or distortions depending on the way the signals are allowed to return to the transmitting end. In this paper, we investigate whether a finitely conducting ground return could be used for BPLC and to investigate its performance over the conventional methods where one of the adjacent power-line conductors is used as signal return. This study could be helpful to those who are proposing the use of ground as a return conductor in BPLC systems. It will be shown that the use of ground return for the BPLC system is effective or better only when the ground conductivity is high (>50 mS/m). When ground conditions are poorer, attenuations increase with frequency, making them unsuitable for BPLC. There are situations where poor ground conditions can still be used but only the transmission-line lengths are shorter. The analysis presented here is based on transmission-line solutions both under lossless (without ground return) and lossy (with ground return) conditions and are applied to typical low-voltage and medium-voltage channels. Comparisons are also made based on the power spectral densities and channel capacities.  相似文献   
4.
This paper presents the effects of load impedance, line length and branches on the performance of an indoor voltage broadband power line communications (BPLC) network. The power line network topology adopted here is similar to that of the system found in Tanzania. Different investigations with regard to network load impedances, direct line length from transmitter to receiver, branched line length, and number of branches has been carried out. From the frequency response of the transfer function (ratio of the received and transmitted signal), it is seen that position of notches and peaks in the magnitude and phase responses are largely affected by the above said network parameters/configuration, mainly in terms of attenuation and dispersion. These effects are observed in the time domain responses also. The observations presented in the paper could be helpful in the suitable design of the BPLC systems for a better data transfer and system performance.  相似文献   
5.
The power line has been proposed as a solution to deliver broadband services to end users. Various studies in the recent past have reported a decrease in channel capacity with an increase in the number of branches for a given channel type whether it is an indoor or low-voltage (LV) or medium-voltage (MV) channel. Those studies, however, did not provide a clear insight as to how the channel capacity is related to the number of distributed branches along the line. This paper attempts to quantify and characterize the effects of channel capacity in relation to the number of branches and with different terminal loads for a given type of channel. It is shown that for a power spectral density (PSD) between 90 dBm/Hz to 30 dBm/Hz, the channel capacity decreases by a 20-30 Mb/s/branch, 14-24 Mb/s/branch, and a 20-25 Mb/s/branch for an MV channel, LV channel, and indoor channel, respectively. It is also shown that the channel capacity is minimum when the load impedance is terminated in characteristic impedances for any type of channel treated here. It is shown that there could be a significant loss in channel capacity if a ground return was used instead of a conventional adjacent conductor return. The analysis presented in this paper would help in designing appropriate power-line communication equipment for better and efficient data transfer.  相似文献   
6.
Recently, different models have been proposed for analyzing the broadband power-line communication (BPLC) systems based on transmission-line (TL) theory. In this paper, we make an attempt to validate one such BPLC model with laboratory experiments by comparing the channel transfer functions. A good agreement between the BPLC model based on TL theory and experiments are found for channel frequencies up to about 100 MHz. This work with controlled experiments for appropriate validation could motivate the application and extension of TL theory-based BPLC models for the analysis of either indoor or low-voltage or medium-voltage channels.  相似文献   
7.
This paper presents the effects of load impedance, line length and branches on the performance of medium-voltage power-line communication (PLC) network. The power-line network topology adopted here is similar to that of the system in Tanzania. Different investigation with regard to network load impedances, direct line length (from transmitter to receiver), branched line length and number of branches has been investigated. From the frequency response of the transfer function (ratio of the received and transmitted signal), it is seen that position of notches and peaks in the magnitude and phase responses are largely affected in terms of attenuation and dispersion by the above said network parameters/configuration. These are observed in the time domain responses too. The observations presented in the paper could be helpful in suitable design of the PLC systems for a better data transfer and system performance.  相似文献   
8.
An underground cable power transmission system is widely used in urban low-voltage power distribution systems. In order to assess the performance of such distribution systems as a low-voltage broadband power-line communication (BPLC) channel, this paper investigates the effects of load impedance, line length, and branches on such systems, with special emphasis on power-line networks found in Tanzania. From the frequency response of the transfer function (ratio of the received and transmitted signals), it is seen that the position of notches and peaks in the magnitude are largely affected (observed in time-domain responses too) by the aforementioned network configuration and parameters. Additionally, channel capacity for such PLC channels for various conditions is investigated. The observations presented in this paper could be helpful as a suitable design of the PLC systems for better data transfer and system performance.  相似文献   
9.
Transient surges in one of the overhead conductors, due to direct lightning strikes, causes crosstalk [C.R. Paul, Analysis of Multiconductor Transmission Lines, John Wiley & Sons, Inc., 1994; C.R. Paul, Introduction to Electromagnetic Compatibility, John Wiley & Sons, Inc., 1992] in other adjacent conductors. It is a common electromagnetic interference (EMI) phenomenon observed in power lines, communication lines and electrified railway lines. In this paper we investigate the crosstalk in multiconductor transmission lines (MTLs) above finitely conducting ground as a function of ground conductivity, heights of the receptor conductor and the terminal loads. For receptor conductor close to the ground, compared to the emitter conductor [C.R. Paul, Analysis of Multiconductor Transmission Lines, John Wiley & Sons, Inc., 1994; C.R. Paul, Introduction to Electromagnetic Compatibility, John Wiley & Sons, Inc., 1992], the decrease in ground conductivity increases the crosstalk peak currents at near end (end near to the source in the emitter conductor) of the receptor conductor, but at the far end it could either increase or decrease depending upon the line height and ground conductivity.  相似文献   
10.
Channel Characterization for Indoor Power-Line Networks   总被引:1,自引:0,他引:1  
Power-line networks are promising mediums by which broadband services can be offered, such as Internet services, voice over Internet protocol, digital entertainment, etc. In this paper, an analysis of delay spread, coherence bandwidth, channel capacity, and averaged delay in the frequency bands up to 100 MHz for typical indoor power-line networks are studied. Earlier studies for indoor power-line networks considered frequencies up to 30 MHz only and earlier works have shown that at these frequency bands, the data rates are generally low and are inefficient for digital entertainment in comparison with wireless local-area networks standards, such as IEEE 802.11 n. In this paper, it is shown that at 100 MHz, the average channel capacity for typical indoor power-line networks can be up to 2 Gb/s and it is found that by increasing the number of branches in the link between transmitting and receiving ends, the average channel capacity decreases from 2 Gb/s to 1 Gb/s (when the number of branches was increased by four times for a power spectral density of -60 dBm/Hz). At the same time, the coherence bandwidth decreased from 209.45 kHz to 137.41 kHz, which is much better than the coherence bandwidths corresponding to 30-MHz systems. It is therefore recommended to operate the indoor power-line networks at 100-MHz bandwidths for a wide variety of broadband services.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号