首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
无线电   2篇
  2023年   1篇
  2021年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Biofouling on surfaces immersed in aquatic environment induces catastrophic corrosion of metallic materials in petrochemical infrastructures, maritime facilities, and power plants. To combat the synergistic effect of biofouling and corrosion on the deterioration of metallic materials, smart coatings possessing a dual function of antibiofouling and anticorrosion properties are needed. Herein, redox-responsive copolymer conjugates are synthesized and employed as coatings with the dual function of biofouling and corrosion mitigation. The dual function of copolymers is attributed to fluorinated units and the corrosion inhibitor 2-mercaptobenzothiazole (MBT) conjugated via disulfide linkages. Indeed, the disulfide linkages can be cleaved in a reducing environment, yielding controlled release of the corrosion inhibitor MBT during corrosion process. The antibiofouling action against protein adsorption and algal attachment is enabled by cooperation of the repellent characteristic of fluorinated moieties and the biocidal effect of conjugated MBT.  相似文献   
2.
Photochromic materials have recently received strong interest for the development of wearable ultraviolet (UV) detection technologies because they do not require electronic components, resulting in systems and devices that change color upon irradiation. However, their implementation in wearable technology has lightweight, compliance, and durability (especially under mechanical stress) requirements that are limited by the materials’ properties. Here, a self-healing photochromic elastomer composite (photoPUSH) consisting of phosphomolybdic acid (PMA) in a self-healing polyurethane dynamic network with reversible disulfide bonds (PUSH) is presented. The unique properties of the dynamic polymer matrix enable multiple complementary functions in the UV-sensing composite: i) photochromism via electron donor groups without requiring additional dopants, ii) stretchability and durability via elastomeric properties, iii) healing of extreme mechanical damage via dynamic bonds, and iv) multimaterial integration via adhesive properties. PhotoPUSH composites exhibit excellent durability, tunable sensing range, and no loss of performance under mechanical stress and severe damage, as well as in underwater environments (waterproof). Leveraging these properties, soft, portable, multimaterial photoPUSH-based UV-sensing devices are developed for applications in environmental monitoring, packaging, and healthcare wearable technology (including skin-mounted, textile-mounted, and wristband devices) in challenging environments and tunable to different skin types.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号