首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
无线电   2篇
  2006年   1篇
  1995年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Previous work on the subject of electromagnetic scattering has shown that the extended Born approximation (EBA) is more accurate than the first-order Born approximation with approximately the same operation count. However, the accuracy of the EBA degrades in cases when the source is very close to the scatterer, or when the electric field exhibits significant spatial variations within the scatterer. This paper introduces a generalized extended Born approximation (GEBA) and its high-order variants (Ho-GEBA) to efficiently and accurately simulate electromagnetic scattering problems. We make use of a generalized series expansion of the internal electric field to construct high-order terms of the generalized extended Born approximation (Ho-GEBA). A salient feature of the Ho-GEBA is its enhanced accuracy over the Born approximation and the EBA, even when only the first-order term of the series expansion is considered in the approximation. This behavior is not conditioned by either the source location or the spatial distribution of the internal electric field. A unique feature of the Ho-GEBA is that it can be used to simulate electromagnetic scattering due to electrically anisotropic media. Such a feature is not possible with approximations of the internal electric field that are based on the behavior of the background electric field. Three-dimensional (3-D) models of electromagnetic scattering are used to benchmark the efficiency and accuracy of the Ho-GEBA, including comparisons against the first-order Born approximation and the EBA.  相似文献   
2.
We introduce a novel approach to the inversion of two-dimensional distributions of electrical conductivity illuminated by line sources. The algorithm stems from the newly developed extended Born approximation (see J. Geophys. Res., vol.98, no.B2, p.1759, 1993), which sums in a simple analytical expression an infinitude of terms contained in the Neumann series expansion of the electric field resulting from multiple scattering. Comparisons of numerical performance against a finite-difference code show that the extended Born approximation remains accurate up to conductivity contrasts of 1:1000 with respect to a homogeneous background, even with large-size scatterers and for a wide frequency range. Moreover, the new approximation is nearly as computationally efficient as the first-order Born approximation. Most importantly, we show that the mathematical form of the extended Born approximation allows one to express the nonlinear inversion of electromagnetic fields scattered by a line source as the sequential solution of two Fredholm integral equations. We compare this procedure against a more conventional iterative approach applied to a limited-angle tomography experiment. Our numerical tests show superior CPU time performance of the two-step linear inversion process  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号