首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   4篇
  国内免费   3篇
电工技术   4篇
化学工业   17篇
金属工艺   2篇
机械仪表   6篇
建筑科学   2篇
能源动力   6篇
轻工业   1篇
无线电   24篇
一般工业技术   7篇
原子能技术   1篇
自动化技术   10篇
  2023年   1篇
  2022年   1篇
  2021年   9篇
  2020年   4篇
  2019年   2篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   2篇
  2014年   5篇
  2013年   3篇
  2012年   8篇
  2011年   7篇
  2010年   3篇
  2009年   5篇
  2008年   1篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  1999年   1篇
  1998年   1篇
  1986年   1篇
排序方式: 共有80条查询结果,搜索用时 20 毫秒
1.
2.
3.
In this paper, analytical models of drain current and small signal parameters for undoped symmetric Gate Stack Double Gate (GSDG) MOSFETs including the interfacial hot-carrier degradation effects are presented. The models are used to study the device behavior with the interfacial traps densities. The proposed model has been implemented in the SPICE circuit simulator and the capabilities of the model have been explored by circuit simulation example. The developed approaches are verified and validated by the good agreement found with the 2D numerical simulations for wide range of device parameters and bias conditions. GSDG MOSFET design and the accurate proposed model can alleviate the critical problem and further improve the immunity of hot-carrier effects of DG MOSFET-based circuits after hot-carrier damage.  相似文献   
4.
Photonic Network Communications - Recently, a number of projected successive interference cancellation (PSIC) and projected parallel interference cancellation (PPIC) structures, which make use of...  相似文献   
5.
The purpose of the work presented in this study is related to heat transfer and airflow modelling analysis in solar chimneys, according to some dominant parameters. A typical case of application is given in this study. It consists in analyzing a natural laminar convective heat transfer problem taking place in a chimney. Heat transfer and fluid dynamic aspects of the airflow, through an axis symmetric system in a dimensionless form, with well defined boundary conditions is thus examined. Results are related to the temperature distribution and the velocity field in the chimney and in the collector, determined by solving the energy equation, and the Navier–Stokes equations, using finite volume method. The numerical code based on this modelling is validated through the Vahl Davis benchmark solution for natural convection and to other authors for other cases.  相似文献   
6.
We present results from the simulation of the electrothermal behaviour of submicron wurtzite GaN/AlGaN High Electron Mobility Transistors (HEMTs). The simulator uses an iterative procedure which couples a Monte Carlo simulation with a fast Fourier series solution of the Heat Diffusion Equation (HDE). The results demonstrate the dependence of the extent of the thermal droop observed in the Ids-Vds characteristics and the device peak temperature on the device bias. The paper also investigates the effect of the inclusion of thermal self-consistency on the device microscopic properties and studies the dependence of the device electrothermal characteristics on the type of substrate material used.  相似文献   
7.
Differences in triacylglycerol, fatty acid, squalene, and tocopherol compositions were demonstrated between 8 varieties of virgin olive oils (Aberkane, Aguenaou, Aharoun, Aimel, Bouchouk Guergour, Bouichret, Chemlal, and Sigoise) from Petite Kabylie area, north eastern Algeria. Fatty acid and triacylglycerol morphotypes characterized each variety. A principal component analysis, based on triacylglycerol, fatty acid, and squalene compositions, differentiates between varieties. Minor fatty acids and squalene, usually not taken into account individually in authentication studies, are strongly involved in this differentiation, whereas the discriminant power of tocopherols is weak. Soft Independent Modeling of Class Analogy classification using chemical compositions as variables showed a high potential to authenticate the varietal origin of Algerian virgin olive oils.  相似文献   
8.
In this paper, a new linear group-wise parallel interference cancellation (LGPIC) detector is proposed. Four different group-detection schemes are derived, namely, the linear group matched filter PIC (LGMF-PIC) detector, the linear group decorrelator PIC (LGDEC-PIC) detector, the linear group minimum mean square error PIC (LGMMSE-PIC) detector and the linear group parallel interference cancellation weighted PIC (LGPIC-PIC) detector. The convergence behavior of the proposed detector is analyzed and conditions of convergence are derived. Finally, extensive simulations regarding the convergence behavior and the effect of the grouping on the convergence behavior of the proposed LGPIC detector are conducted.
A. ZerguineEmail:
  相似文献   
9.
Main objective of this frame work is to establish the modeling and simulation of mix convection flow along a vertically heated sheet filled with water. Two important mechanisms: magneto-hydrodynamics and porous medium are also considered within the restricted domain of the fluid flow. Temperature is controlled with the wall temperature and then mathematical model is constructed in the form of PDEs. To determine the similarity solution results are obtained via two different techniques. Numerically solutions are obtained with the help of shooting technique and then validate with the help of optimal homotopy analysis method (OHAM). Obtained analytical and numerical results are validated graphically. Effect of emerging parameters are plotted for velocity and temperature profiles. It is found that for mixed convection parameter (ξ<0), velocity profile depicts the increasing behavior for various values of power index m. However, for ξ>0, velocity profile shows the decreasing behavior with respect the parameter m. Temperature distribution in the restricted domain depicts the decreasing behavior for both m and ξ.  相似文献   
10.
Sheet nacre is a natural biocomposite with a multiscale structure including a mineral phase of calcium carbonate (97 wt.%) and two organic matrices (3 wt.%). The mineral phase is constituted by an arrangement of CaCO3 biocrystal nanograins (ca 40 nm in size) drowned in an “intracrystalline” organic matrix (4 nm thick) in order to form a microsized flat organomineral aragonite platelet. These platelets are themselves surrounded by an “intercrystalline” organic matrix (40 nm thick) building up a very tough materials. This microarchitecture referred to as “bricks and mortar” nacre structure, is mainly studied for the creation of new organic/inorganic hybrid materials. Currently, only little is known about the nacre mechanical behaviour under dynamical loading and more particularly under tribological conditions which involve shocks and thermal effects simultaneously. This paper brings out the thermal-induced damage mechanisms effect on the wear of sheet nacre by the assessment of the thermal component of the friction with a scanning thermal microscope. Results reveal that the mean contact pressure is the main driving force involved in the degradation of the organic constituents. For the lowest mean contact pressure (<0.4 MPa), wear is rather weak because the friction-induced thermal component is not sufficient for degrading the organic matrices. In contrast, beyond 0.4 MPa, the friction-induced contact temperature rises up over the melting point of the organic matrices, and may even reach the temperature of the aragonite–calcite phase transformation increasing dramatically the wear of sheet nacre.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号