首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
无线电   6篇
  2022年   2篇
  2020年   1篇
  2009年   1篇
  2007年   1篇
  2002年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Journal of Signal Processing Systems - This paper presents an algorithm-adaptable, scalable, and platform-portable generator for massive multiple-input multiple-output (MIMO) baseband processing...  相似文献   
2.
Among all the plastic pollution, straws have brought particularly intricate problems since they are single use, consumed in a large volume, cannot be recycled in most places, and can never be fully degraded. To solve this problem, replacements for plastic straws are being developed following with the global trend of plastic straw bans. Nevertheless, none of the available degradable alternatives are satisfactory due to drawbacks including poor natural degradability, high cost, low mechanical performance, and poor water stability. Here, all‐natural degradable straws are designed by hybridizing cellulose nanofibers and microfibers in a binder‐free manner. Straws are fabricated by rolling up the wet hybrid film and sealed by the internal hydrogen bonding formed among the cellulose fibers after drying. The cellulose hybrid straws show exceptional behaviors including 1) excellent mechanical performance (high tensile strength of ≈70 MPa and high ductility with a fracture strain of 12.7%), 2) sufficient hydrostability (10× wet mechanical strength compared to commercial paper straw), 3) low cost, and 4) high natural degradability. Given the low‐cost raw materials, the binder‐free hybrid design based on cellulose structure can potentially be a suitable solution to solve the environmental challenges brought by the enormous usage of plastics straws.  相似文献   
3.
Journal of Signal Processing Systems - Utilizing mmWave massive MIMO frontends for base station to mobile communication promises unprecedented throughput gains in cellular networks. Power...  相似文献   
4.
We propose a novel approach to QoS for real-time traffic over wireless mesh networks, in which application layer characteristics are exploited or shaped in the design of medium access control. Specifically, we consider the problem of efficiently supporting a mix of Voice over IP (VoIP) and delay-insensitive traffic, assuming a narrowband physical layer with CSMA/CA capabilities. The VoIP call carrying capacity of wireless mesh networks based on classical CSMA/CA (e.g., the IEEE 802.11 standard) is low compared to the raw available bandwidth, due to lack of bandwidth and delay guarantees. Time Division Multiplexing (TDM) could potentially provide such guarantees, but it requires fine-grained network-wide synchronization and scheduling, which are difficult to implement. In this paper, we introduce Sticky CSMA/CA, a new medium access mechanism that provides TDM-like performance to real-time flows without requiring explicit synchronization. We exploit the natural periodicity of VoIP flows to obtain implicit synchronization and multiplexing gains. Nodes monitor the medium using the standard CSMA/CA mechanism, except that they remember the recent history of activity in the medium. A newly arriving VoIP flow uses this information to grab the medium at the first available opportunity, and then sticks to a periodic schedule, providing delay and bandwidth guarantees. Delay-insensitive traffic fills the gaps left by the real-time flows using novel contention mechanisms to ensure efficient use of the leftover bandwidth. Large gains over IEEE 802.11 networks are demonstrated in terms of increased voice call carrying capacity (more than 100% in some cases). We briefly discuss extensions of these ideas to a broader class of real-time applications, in which artificially imposing periodicity (or some other form of regularity) at the application layer can lead to significant enhancements of QoS due to improved medium access.  相似文献   
5.
A simple approach for adaptive interference suppression for the downlink (base-to-mobile link) of a direct sequence (DS) based cellular communication system is presented. The base station transmits the sum of the signals destined for the different mobiles, typically attempting to avoid intra-cell interference by employing orthogonal spreading sequences for different mobiles. However, the signal reaching any given mobile passes through a dispersive channel, thus destroying the orthogonality. In this paper, we propose an adaptive linear equalizer at the mobile that reduces interference by approximately restoring orthogonality. The adaptive equalizer uses the pilot's spreading sequence (which observes the same channel as the spreading sequence for the desired mobile) as training. Simulation results for the linear Minimum Mean Squared Error (MMSE) equalizer are presented, demonstrating substantial performance gains over the RAKE receiver. Long spreading sequences (which vary from symbol to symbol) are employed, so that the equalizer adapts not to the time-varying spreading sequences, but to the slowly varying downlink channel. Since the inter-cell interference from any other base station also has the structure of many superposed signals passing through a single channel, the adaptive equalizer can also suppress inter-cell interference, with the tradeoff between suppression of intra- and inter-cell interference and noise enhancement depending on their impact on the Mean Squared Error (MSE).  相似文献   
6.
Distributed transmit beamforming is a form of cooperative communication in which two or more information sources simultaneously transmit a common message and control the phase of their transmissions so that the signals constructively combine at an intended destination. Depending on the design objectives and constraints, the power gains of distributed beamforming can be translated into dramatic increases in range, rate, or energy efficiency. Distributed beamforming may also provide benefits in terms of security and interference reduction since less transmit power is scattered in unintended directions. Key challenges in realizing these benefits, however, include coordinating the sources for information sharing and timing synchronization and, most crucially, distributed carrier synchronization so that the transmissions combine constructively at the destination. This article reviews promising recent results in architectures, algorithms, and working prototypes which indicate that these challenges can be surmounted. Directions for future research needed to translate the potential of distributed beamforming into practice are also discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号