首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
能源动力   1篇
无线电   2篇
一般工业技术   1篇
  2019年   1篇
  2014年   1篇
  2011年   2篇
排序方式: 共有4条查询结果,搜索用时 8 毫秒
1
1.
2.
In this paper, an attempt has been made to develop a two‐axis tracking system for solar parabolic dish concentrator and experimentally evaluated the performance of the tracking system. In this proposed design, the sensor design uses the illumination produced by the convex lens on the apex of a pyramid to align the dish in‐line with the sun. The change in incident angle of the solar rays on the lens surface shifts the area of illumination from the apex of the pyramid towards its faces. Photodiodes placed on the faces of the pyramid are used as the sensitive elements to detect the movement of the sun. The sensor output is fed to a microcontroller‐based system to drive the stepper motor on the basis of the programmed algorithm such that it receives normal incidence of sunlight on the sensor. To evaluate the performance of the proposed system, a conventional available 1‐W photovoltaic (PV) panel is placed at the focal point to measure the short circuit current and open circuit voltage. With respect to the conventional solar PV panel, it is observed that the positioning accuracy of the proposed tracking system enhances the short circuit current of 0.11 A by 86%. Thus, the proposed tracking system can be used in a stand‐alone parabolic dish with concentrating PV module as the focal point for further studies.  相似文献   
3.
Electrochemical properties of FeNbO4 as a lithium insertion anode material were studied with a view to understand structure–property relationships. Orthorhombic and monoclinic polymorphs of FeNbO4 were synthesized and characterized by powder X-ray diffraction and laser Raman spectroscopy. Possible redox reactions, as deciphered from cyclic voltammograms, suggest the structural similarity between orthorhombic and monoclinic polymorphs upon lithium insertion. A coating of carbon led to a remarkable improvement in the electrochemical performance of monoclinic FeNbO4. The coated material exhibited an average reversible capacity of 125.5 mAh g−1. The material also sustained hundreds of charge/discharge cycles and exhibited good rate capability. Upon coating with carbon, the monoclinic FeNbO4 transformed into FeNb2O6. The conversion and stability were confirmed by powder XRD and laser Raman studies of carbon-coated material before and after 450 cycles. The in situ conversion of FeNbO4 into FeNb2O6 during carbon coating was further supported by EPR studies in which the absence of signal for the carbon-coated material indicated conversion of Fe3+ to Fe2+. Our study reveals the possibility of exploring potential materials in the Fe–Nb–O system and enhancing their performance as anode materials for lithium-ion batteries.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号