首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学工业   5篇
能源动力   1篇
无线电   1篇
一般工业技术   3篇
  2022年   1篇
  2019年   2篇
  2014年   1篇
  2011年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  1999年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Wireless Personal Communications - The Internet of Things (IoT) is a concept that has attracted significant attention since the emergence of wireless technology. The knowledge diffusion of IoT...  相似文献   
2.
Biomass in the form of oil palm shellwas pyrolysed in an externally heated 5 cm diameter, 30 cm high fluidised bed pyrolysis reactorwith nitrogen as the fluidising gas and silica sand as the bed material. The pyrolysis oil wascollected in a series of condenser and ice-cooled collectors. The char was collected separatelywhile the gases were flared. The effects of process conditions, like fluidised bed reactortemperature, feed size and fluidisation gas flow rate on the product yields were studied. Theproduct yields were found to be significantly influenced by the process conditions. Thecomposition of oil was determined at fluidised bed temperature of 500°C at which the liquidproduct yield was maximum. The oil was analysed by Fourier Transform infra-red (FTIR)spectroscopy and gas chromatography/mass spectrometry (GC/MS) techniques. In addition, thephysical properties of the oil were determined. The results showed that the oil was highlyoxygenated containing a high fraction of phenol-based compounds. Detailed analysis of the oilshowed that there was no concentration of biologically active polycyclic aromatic species in theoil. A brief preliminary economic analysis is presented at the end of the paper (see Appendix). ©1999 Elsevier Science Ltd. All rights reserved.  相似文献   
3.
The performance of H‐ZSM‐5‐supported bimetallic catalysts with chromium as the base metal in the combustion of ethyl acetate and benzene is reported. A reactor operated from 100 to 500 °C at a gas hourly space velocity (GHSV) of 32 000 h?1 was used for study of the activity. A combination of 1.0 wt% chromium and 0.5 wt% copper yielded a catalyst (Cr1.0Cu0.5/Z) with improved conversion and carbon dioxide yield. Cr2O3 (Cr3+) and CuO (Cu2+) were the predominant metal species in the catalyst. In agreement with the Mars–van Krevelen model, improved reducibility of Cr3+ in the presence of Cu2+ led to an improvement in activity. The copper content in Cr1.0Cu0.5/Z also favored the formation of deep combustion products. Condensation and subsequent growth of coke precursors in the catalyst pores led to the formation of a softer and less aromatic coke fraction while dehydrogenation activity on acid sites formed a harder and more aromatic coke fraction. The use of Cr1.0Cu0.5/Z favored the formation of lower molecular weight intermediates, leading to reduction in formation of softer coke. Copyright © 2005 Society of Chemical Industry  相似文献   
4.
The mass transfer of substrates through a bio-catalytic membrane layer is a key issue in determining the performance of β-galactosidase-catalyzed conversion of lactose in a hollow fiber membrane reactor (HFMR) system. An investigation on the effect of solutes mass transfer through a bio-catalytic membrane layer was carried out using the coupled mass transfer-reaction model. Product formation was reduced at a trans-membrane pressure (TMP) of higher than 0.5?bar. Meanwhile, the concentration polarization modulus of solutes rapidly increased with higher TMP and this result suggests the formation of gel layer, which reduced bio-catalysis rate at higher applied TMP. The concentration profile of solutes or substrates on the bio-catalytic membrane surface, which determines the rate of reaction was reduced due to mass transfer limitation. This investigation highlights that the formation of substrate-β-gal complex in an immobilized system is influenced by the mass transfer behavior of its substrate.  相似文献   
5.
The paper reports on the performance of chromium or/and copper supported on H-ZSM-5(Si/Al = 240) modified with silicon tetrachloride (Cr1.5/SiCl4-Z, Cu1.5/SiCl4-Z and Cr1.0Cu0.5/SiCl4-Z) as catalysts in the combustion of chlorinated VOCs (Cl-VOCs). A reactor operated at a gas hourly space velocity (GHSV) of 32,000 h(-1), a temperature between 100 and 500 degrees C with 2500 ppm of dichloromethane (DCM), trichloromethane (TCM) and trichloroethylene (TCE) is used for activity studies. The deactivation study is conducted at a GHSV of 3800 h(-1), at 400 degrees C for up to 12 h with a feed concentration of 35,000 ppm. Treatment with silicon tetrachloride improves the chemical resistance of H-ZSM-5 against hydrogen chloride. TCM is more reactive compared to DCM but it produces more by-products due to its high chlorine content. The stabilization of TCE is attributed to resonance effects. Water vapor increases the carbon dioxide yield through its role as hydrolysis agent forming reactive carbocations and acting as hydrogen-supplying agent to suppress chlorine-transfer reactions. The deactivation of Cr1.0Cu0.5/SiCl4-Z is mainly due to the chlorination of its metal species, especially with higher Cl/H feed. Coking is limited, particularly with DCM and TCM. In accordance with the Mars-van Krevelen model, the weakening of overall metal reducibility due to chlorination leads to a loss of catalytic activity.  相似文献   
6.
Computational fluid dynamics (CFD) simulation was applied to simulate the dilution of undiluted crude oil (UCO) in a dilution tank of a palm oil mill. Fluid flow and mixing characteristics were examined. Considering the mixing behavior, the mixing of dilution water and UCO occurred as soon as these fluids entered the dilution tank, and the oil mass fraction in the mixture decreased gradually towards the outlet of the tank. Meanwhile, the velocity of dilution water and UCO declined as the fluids moved from their respective inlets. The intensity of turbulence flow remained until near the tank outlet. For the parametric study, the oil mass fraction of diluted crude oil (DCO) increased with higher UCO flow rate and oil mass fraction in the UCO but declined with higher dilution water flow rate.  相似文献   
7.
Hao Liu  Ramlan Zailani 《Fuel》2005,84(16):2109-2115
This paper presents experimental results of a 20 kW vertical combustor equipped with a single pf-burner on pulverised coal combustion in air and O2/CO2 mixtures with NOx recycle. Experimental results on combustion performance and NOx emissions of seven international bituminous coals in air and in O2/CO2 mixtures confirm the previous findings of the authors that the O2 concentration in the O2/CO2 mixture has to be 30% or higher to produce matching temperature profiles to those of coal-air combustion while coal combustion in 30% O2/70% CO2 leads to better coal burnout and less NOx emissions than coal combustion in air. Experimental results with NOx recycle reveal that the reduction of the recycled NO depends on the combustion media, combustion mode (staging or non-staging) and recycling location. Generally, more NO is reduced with coal combustion in 30% O2/70% CO2 than with coal combustion in air. Up to 88 and 92% reductions of the recycled NO can be achieved with coal combustion in air and in 30% O2/70% CO2 respectively. More NO is reduced with oxidant staging than without oxidant staging when NO is recycled through the burner. Much more NO is reduced when NO recycled through the burner (from 65 to 92%) than when NO is recycled through the staging tertiary oxidant ports (from 33 to 54%). The concentration of the recycled NO has little influence on the reduction efficiency of the recycled NO with both combustion media—air and 30% O2/70% CO2.  相似文献   
8.
The catalytic performance of bimetallic chromium–copper supported over untreated ZSM‐5 (Cr? Cu/Z), ZSM‐5 treated with silicon tetrachloride (Cr–Cu/SiCl4‐Z) and ZSM‐5 treated with steam (Cr–Cu/H2O‐Z) is reported. The activity is based on the combustion of ethyl ethanoate and benzene at a feed concentration of 2000 ppm and a gas hourly space velocity (GHSV) of 32 000 h?1. Due to higher reactivity and larger molecular size compared with that of water molecules, SiCl4 reacted at the external surface of ZSM‐5 crystals. Cr–Cu/SiCl4‐Z and Cr–Cu/H2O‐Z both gave slightly lower conversion and carbon dioxide yield compared with Cr–Cu/Z. This was attributed to larger active metal crystallites formed in the mesopores and narrowing pore mouth and pore intersection by extraframework species. Cr–Cu/SiCl4‐Z and Cr–Cu/H2O‐Z both had reduced concentration and strength of acid sites, thus making them less susceptible to deactivation by coking. The coke accumulated by these two catalysts was relatively softer and more easily decomposed in oxygen during catalyst regeneration. Copyright © 2004 Society of Chemical Industry  相似文献   
9.
10.
Ordered mesoporous metal oxides (OMMO) SnO2 with large surface areas and highly crystalline frameworks were successfully synthesized via nanocasting routes using 3D cubic ordered mesoporous silica KIT-6 templates. The chemical and structural properties of these materials were characterized by means of XRD, N2 adsorption-desorption SEM and TEM analyses. The present work revealed that the mesoporous SnO2 materials exhibited well-defined and long-range periodic order ofmesopores as well as highly crystalline frameworks, indicating successful replication from the mesoporous KIT-6 silica templates. Moreover, these materials demonstrated high surface area of 109 m^2/g and high pore volume of 0.22 cm^3/g as well as large pore size of 6.2 nm. Hence, the nanocasting route offers a versatile and simple way of creating ordered mesoporous SnO2 with enhanced properties that may have potential applications in the field of catalysis and gas-sensing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号