首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
无线电   5篇
  2003年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
This paper describes a computer vision system for the automatic extraction and velocity measurement of moving leukocytes that adhere to microvessel walls from a sequence of images. The motion of these leukocytes can be visualized as motion along the wall contours. The authors use the constraint that the leukocytes move along the vessel wall contours to generate a spatiotemporal image, and the leukocyte motion is then extracted using the methods of spatiotemporal image analysis. The generated spatiotemporal image is processed by a special-purpose orientation-selective filter and a subsequent grouping process newly developed for this application. The orientation-selective filter is designed by considering the particular properties of the spatiotemporal image in this application in order to enhance only the traces of leukocytes. In the subsequent grouping process, leukocyte trace segments are selected and grouped among all the segments obtained by simple thresholding and skeletonizing operations. The authors show experimentally that the proposed method can stably extract leukocyte motion  相似文献   
2.
Automated segmentation of acetabulum and femoral head from 3-d CT images   总被引:2,自引:0,他引:2  
This paper describes several new methods and software for automatic segmentation of the pelvis and the femur, based on clinically obtained multislice computed tomography (CT) data. The hip joint is composed of the acetabulum, cavity of the pelvic bone, and the femoral head. In vivo CT data sets of 60 actual patients were used in the study. The 120 (60 /spl times/ 2) hip joints in the data sets were divided into four groups according to several key features for segmentation. Conventional techniques for classification of bony tissues were first employed to distinguish the pelvis and the femur from other CT tissue images in the hip joint. Automatic techniques were developed to extract the boundary between the acetabulum and the femoral head. An automatic method was built up to manage the segmentation task according to image intensity of bone tissues, size, center, shape of the femoral heads, and other characters. The processing scheme consisted of the following five steps: 1) preprocessing, including resampling 3-D CT data by a modified Sine interpolation to create isotropic volume and to avoid Gibbs ringing, and smoothing the resulting images by a 3-D Gaussian filter; 2) detecting bone tissues from CT images by conventional techniques including histogram-based thresholding and binary morphological operations; 3) estimating initial boundary of the femoral head and the joint space between the acetabulum and the femoral head by a new approach utilizing the constraints of the greater trochanter and the shapes of the femoral head; 4) enhancing the joint space by a Hessian filter; and 5) refining the rough boundary obtained in step 3) by a moving disk technique and the filtered images obtained in step 4). The above method was implemented in a Microsoft Windows software package and the resulting software is freely available on the Internet. The feasibility of this method was tested on the data sets of 60 clinical cases (5000 CT images).  相似文献   
3.
A computer postprocessing technique is developed to remove MRI artifact arising from unknown translational motion in the imaging plane. Based on previous artifact correction methods, the improved technique uses two successive steps to reduce read out and phase-encoding direction artifacts: First, the spectrum shift method is applied to remove read-out axis translational motion. Then, the phase retrieval method is employed to eliminate the remaining subpixel motion of the read-out axis and the entire motion of the phase-encoding axis. In the presence of noise, to protect edge detection (in the spectrum shift method), two high-density gray-level markers are added, one to each side of the imaging object. Experimental results with an actual MR scan confirmed the ability of the method to correct the artifact of an MR image caused by unknown translational motion in the imaging plane  相似文献   
4.
MRI artifact cancellation due to rigid motion in the imaging plane   总被引:7,自引:0,他引:7  
A post-processing technique has been developed to suppress the magnetic resonance imaging (MRI) artifact arising from object planar rigid motion. In two-dimensional Fourier transform (2-DFT) MRI, rotational and translational motions of the target during magnetic resonance magnetic resonance (MR) scan respectively impose nonuniform sampling and a phase error an the collected MRI signal. The artifact correction method introduced considers the following three conditions: (1) for planar rigid motion with known parameters, a reconstruction algorithm based on bilinear interpolation and the super-position method is employed to remove the MRI artifact, (2) for planar rigid motion with known rotation angle and unknown translational motion (including an unknown rotation center), first, a super-position bilinear interpolation algorithm is used to eliminate artifact due to rotation about the center of the imaging plane, following which a phase correction algorithm is applied to reduce the remaining phase error of the MRI signal, and (3) to estimate unknown parameters of a rigid motion, a minimum energy method is proposed which utilizes the fact that planar rigid motion increases the measured energy of an ideal MR image outside the boundary of the imaging object; by using this property all unknown parameters of a typical rigid motion are accurately estimated in the presence of noise. To confirm the feasibility of employing the proposed method in a clinical setting, the technique was used to reduce unknown rigid motion artifact arising from the head movements of two volunteers.  相似文献   
5.
Telemedicine for evaluation of brain function by a metacomputer   总被引:1,自引:0,他引:1  
A method of evaluating brain function using the metacomputer concept of the Globus system combined with the Message Passing Interface (MPI) is described. The proposed method has the ability to exploit various geographically distributed resources and parallel computing linked to a high-technology medical instrumentation system (magnetoencephalography) to analyze the functional state of the brain. It is envisaged that the method will lead to the realization of an efficient telemedicine system for health care  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号