首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
能源动力   6篇
一般工业技术   3篇
  2023年   7篇
  2022年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
水系钾基电池(APBs)因具有高安全性和环境友好的性质而被广泛研究.然而,由于电极材料和工作机制的限制,APBs在倍率性能和能量密度方面需要进一步提高,以满足发展需求.针对上述问题,我们首次成功设计并组装了以Z n金属作为阳极,K1.9 2C u 0.6 2 M n 0.3 8-[Fe(CN)6]0.968·□0.0 3 2·H2O0.35作为阴极,2 mol L-1Zn(SO3CF3)2+12 mol L-1KSO3CF3作为电解液的水系钾基电池.这种混合离子体系的设计优点是:(i)选择金属锌作为阳极,提高了APBs的工作电位;(ii)双阳离子储存机制缩短了离子传输路径;(ⅲ)来自双阳离子电解质的K+通过静电屏蔽作用抑制了锌枝晶的生长.因...  相似文献   
2.
钠离子电池(SIBs)的阳极材料一直备受研究关注,但缓慢的动力学行为和较大的体积变化限制了其在实际应用中的推广。为了克服这些问题,本研究利用金属有机框架和MoS2的优异性能,设计并制备了具有稳定骨架结构的复合材料。以Co-ZIF为前驱体,添加Mo源材料,在高温硫化烧结的过程中,构建了花状的Co9S8/MoS2/C复合材料,探究其在不同温度条件下的结构和电化学性能。此外,通过密度泛函理论(DFT)分析了Co9S8(001)/MoS2异质结对扩散动力学的影响。结果表明,电子结构在异质结构的界面处发生了重塑,Co9S8/MoS2表现出典型的金属性和显著增强的电子导电性。在所有样品中,700°C合成的阳极材料Co9S8/MoS2/C具有更稳定的结构和优异的电化学性能。当电流密度从4 000恢复到40 mA g-1时,Co9S8/MoS2/C-700的放电容量可以从368 mAh g-1完全恢复到571 mAh g-1,并稳定在543 mAh g-1。综上所述,本研究提供了一些关于异质结材料合理制备的思路,有助于设计高性能的金属钠离子电池负极复合材料。  相似文献   
3.
为模拟实际工业生产中废旧LiFePO_(4)电池回收及其综合应用,本文设计了在酸性条件下对废旧LiFePO_(4)电池正负混合极片中有价金属Li、Cu、Fe的选择性浸出及其产物回收再利用。电池拆解后,将正负混合极片机械粉碎后过筛,得到Cu、Al高含量杂质的正负极混合粉,700℃高温焙烧后,除碳率和除氟率分别为99.03%和99.93%,后对其进行Li、Cu的选择性浸出实验。研究结果表明,浸Li段在H^(+)/Li^(+)的物质的量之比为0.7、浸出温度90℃、浸出时间3 h、液固比为3∶1时,金属元素Li、Fe、Cu、Al的浸出率分别为:91.88%、0.0024%、4.71%、0.11%,实现对Li的有效分离。对浸出液引入饱和Na_(2)CO_(3)作为沉淀剂后,成功回收合成电池级碳酸锂。另一方面,对浸出渣进行450℃焙烧后,滴加浓硫酸控制pH为1.5、浸出温度90℃、浸出时间3 h、液固比5∶1,金属元素Fe、Cu浸出率为:0.11%和92.54%,实现了有价金属Cu的选择性浸出。将处理后的浸铜渣进行酸溶,滴加氨水调节pH至1.8,形成二水磷酸铁,沉淀率可达到95%。焙烧除去二水磷酸铁中的结晶水,得到电池级磷酸铁,纯度为99.48%。  相似文献   
4.
因为锂金属电池(LMBs)具有高能量密度、高理论比容量和低氧化电位等优点,被认为是后锂离子电池(LIBs)中理想的能量存储装置之一。然而,锂金属阳极(LMA)面临着多种障碍,包括低库仑效率(CE)、大体积膨胀、锂枝晶的形成、低安全和低稳定性及短寿命,这些问题阻碍了LMBs的实际应用。由于低密度、高机械强度、稳定的化学性质和大比表面积等优势,碳基材料受到了广泛关注。建立复合碳基LMA是各种策略中的一种有效选择,因为其具有缓解体积膨胀、降低局部电流密度以及提供均匀Li+沉积的活性成核位点的能力。本文综述了复合碳基LMA的最新研究进展,包括碳基复合材料、元素金属及其化合物与碳基材料的复合物,以及它们与阳极界面稳定性和结构的关系。最后,本文总结并提出了关于将碳基材料作为LMA支架的观点和见解。  相似文献   
5.
钾离子电池(PIBs)具有资源丰富、成本低廉、环境友好及能量密度高等优点,成为替代锂离子电池(LIBs)的理想新型储能体系。尽管近年来PIBs在电极领域的研究已经取得了显著进展,但当前钾离子电池电解液的研究仍在初级阶段,其设计和使用面临如电解液和电极之间严重的副反应,导致不稳定的固-液界面和低库仑效率等诸多挑战。因此,发展优良的电解液是PIBs实现产业化应用的关键。本文对近年来PIBs电解液的特点及研究进展进行了综述和讨论。首先聚焦于有机电解液、水系电解液、离子液体电解液和固体电解质等4个主流电解液的发展现状和前景,着重介绍了有机电解液中的酯基电解液和醚基电解液,总结了当前PIBs电解液面临的关键问题,包括安全性较差(有机电解液)、电位窗口窄(水系电解液)、离子电导率相对较低(固体电解质)、成本高(离子液体电解液)等,讨论了新型电解液的改性设计和解决方案。本综述的目的是阐述电解液在PIBs中的重要性,探究当前和新兴的PIBs电解液的应用潜力,并对电解液未来发展提出了一些建议和前景。  相似文献   
6.
正极材料作为锂离子电池的四大核心材料之一,是锂离子电池电化学性能的决定性因素。其中,富镍三元正极材料LiNixCoyMn1.x.yO2(NCM,x≥0.6)因其较高的比容量和卓越的倍率性能等优点被广泛关注,被认为是下一代锂离子电池中最具有发展潜力的正极材料之一。然而,富镍三元正极材料存在的循环稳定性差、热稳定性差以及安全性能低等缺点,限制了其在电动汽车和混合动力汽车等方面的大规模应用。因此,富镍三元正极材料NCM的研究对于完善当前锂离子电池体系有着重要的意义。随着材料制备方法的不断改进,富镍三元正极材料的电化学性能得到了显著的提高。本文综述了近年来富镍三元正极材料的研究进展,依据富镍三元正极材料NCM的晶体结构以及阳离子混排、循环稳定性差、材料表面残碱和表面副反应等失效机理方面展开,重点阐述了通过元素掺杂、表面包覆、掺杂包覆一体化、单晶化、构建核壳结构和浓度梯度的方法对其电化学性能的改善,并对富镍三元正极材料在锂离子电池的应用和未来的研究方向做出展望。  相似文献   
7.
锂离子电池高镍Li Ni_(x)Co_(y)Mn_(1-x-y)O_(2)(NCM,x≥0.6)正极材料因具有较高的能量密度和低成本等优势在电池领域备受关注,然而随着镍含量的升高,材料锂镍混排严重且热稳定性下降,导致高镍三元材料的循环稳定性和安全性恶化。本研究针对高镍三元材料阳离子无序排列严重和循环稳定性差的问题,通过共沉淀法在前驱体合成过程中将Mg掺杂进入晶体,得到Li Ni_(0.8)Co_(0.1)Mn_(0.09)Mg_(0.01)O_(2)(Mg1.0)活性材料,进一步利用液相法在材料表面包覆Al_(2)O_(3),成功制备Al_(2)O_(3)涂覆的Li Ni_(0.8)Co_(0.1)Mn_(0.09)Mg_(0.01)O_(2)复合材料(Mg1.0@Al)。X射线衍射(XRD)结果表明,Mg掺杂能够有效扩大材料层间距,抑制阳离子混排;扫描电子显微镜(SEM)结合透射电子显微镜(TEM)结果表明,改性未对NCM811材料整体形貌造成影响,同时能够明显地观察到通过液相法在材料表面包覆的Al_(2)O_(3)涂层。电化学测试结果表明,镁铝协同改性可以稳定NCM811材料结构,减少阴极的界面极化,遏制材料与电解液发生副反应,使得材料表现出优越的电化学性能。Mg1.0@Al在1 C循环100次后表现出稳定的放电电压(ΔV=5.2 m V)、较低的电荷转移阻抗(R_(ct)=51.66Ω)和卓越的锂离子扩散系数(D_(Li)=4.05×10^(-14)cm^(2)/s)。同时,Mg1.0@Al材料在2.8~4.3V电压范围下,展现出卓越的循环性能和倍率性能:1 C下循环100次和400次后仍有188.58 m Ah/g和147.47 m Ah/g的放电比容量,容量保持率分别为95.18%和74.54%;5 C大倍率电流下,放电比容量高达146.3 m Ah/g。  相似文献   
8.
回收退役三元锂电池中的有价金属,可减少环境污染和缓解资源匮乏等问题。本研究通过一种先进、简单的前端提锂工艺,将拆解退役锂离子电池得到的正负极混合粉置于管式炉中,在750℃下对管式炉维持一定的压力并持续通入二氧化碳焙烧1 h,焙烧后得到含锂焙烧粉。再往焙烧粉中加入一定量的水制成浆料,并持续性通入二氧化碳气体,经固液分离后得到含碳酸氢锂的溶液,再将溶液经加热分解后制备得到纯度为99.5%的电池级碳酸锂。整套工艺锂综合浸出率可达99.05%,回收率可达99%,在实现高回收率的基础上兼具成本低效益高的优势,为目前较为先进的回收技术之一,能够有效解决目前锂回收难、回收成本高、经济效益差的问题。  相似文献   
9.
室温钠硫(RT Na-S)电池的正负极材料为硫(S)和钠(Na)元素,S和Na元素具有成本低、资源丰富、能量密度高等一系列优点,因此室温钠硫电池被认为是一种极具潜力的可充电电池。但是在发展过程中面临着库仑效率低和循环稳定性差等一系列的问题,这些问题严重阻碍了室温钠硫电池的进一步发展和实际应用。有很多因素导致了这些问题,如S阴极的结构、隔膜和电解液等方面,其中最主要的原因是多硫化物的穿梭效应和多步反应缓慢的动力学。因此,基于近几年对RT Na-S电池已有的研究成果,本文从S在电解液中的氧化还原机理出发,总结了RT Na-S电池在S阴极的纳米结构设计、隔膜设计和电解液设计三个角度的发展现状,在此基础上列举了RT Na-S电池现发展阶段所面临的挑战。结果发现:(1)目前绝大部分提高多硫化物(NaPSs)转化率的策略均以抑制穿梭效应,促进缓慢的动力学为主;(2)RT Na-S电池现阶段面临的挑战主要是S正极本质存在问题、电解液、巨大的体积变化以及多硫化物中间体引起的穿梭效应等。本文期望为RT Na-S电池的进一步发展和商业化提供新的思路。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号