首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
机械仪表   1篇
一般工业技术   5篇
冶金工业   3篇
  2019年   1篇
  2011年   4篇
  2010年   4篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Pure SnO2 and Ce-doped(1%,4%,7%,10% in mass ratio) SnO2 powders were prepared by a simple sol-gel method.The as-prepared samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),and Brunauer-Emmett-Teller(BET) specific surface area analyzers.Results showed that the 7% Ce-doped sample has a particle size of 0.1-0.3 μm with a narrow particle size distribution while the pure SnO2 was consisted of large agglomerated particles with a diameter up to several micrometers.When used as the catalyst to degrade methyl orange(MO),the 7% Ce-doped sample showed best photocatalytic property.These properties can be attributed to the large surface area and small particle size of the 7% Ce-doped sample.  相似文献   
2.
石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点.由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域.综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景.  相似文献   
3.
以Zn(NO3)2·6H2O和NaOH为原料,CTAB为表面活性剂,通过微波辅助液相反应过程在低温下成功地制备了ZnO纳米棒.X射线衍射谱和扫描电镜结果表明,产物是六方纤锌矿结构ZnO纳米棒,长度为5~30μm,直径为0.1~1μm.气敏性能测试表明,所制备的ZnO纳米棒对H2S气体具有较好的选择性,但灵敏度不高.对ZnO纳米棒进行In掺杂后,对H2S气体的灵敏度和选择性大幅提高,在工作温度为332℃时,对体积分数为50X10-5的H2S灵敏度为29.217,说明In掺杂的ZnO纳米棒是有潜力的探测H2S气体的气敏传感器材料.  相似文献   
4.
Nd-doped(2%,5%,10% in mass ratio) SnO2 powders were prepared via a facile hydrothermal procedure.The as-prepared samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),and Brunauer-Emmett-Teller(BET) specific surface area analyzers.Results showed that the Nd-doped SnO2 samples had more uniform and smaller primary particles compared with the pure sample,the particle size of the doped SnO2 decreased gradually with the increase of Nd,and the specific surface area also increased with the increase of the doped Nd.When used as gas sensing materials,the 5% and 10% Nd-doped sample showed high sensitivity and selectivity to ethanol.Furthermore,the Nd-doped sample showed fast response and recovery time to ethanol gas.This could be attributed to their small diameter,large surface area and Nd element doping.  相似文献   
5.
针对环境探测中对信息实时获取和机器人优越性能的需求,介绍了所设计的六足蜘蛛爬行机器人的系统组成及对越障性能的分析计算。机器人由6条机械腿和机器人主体构成,以Stm32f407芯片为主控制器,并使用PID算法来控制整个机器人保持平衡,通过图像采集系统完成对操作指令的实时反应。基于重心超越学,通过理论研究、质心分析和数值计算对机器人的越障能力进行分析,得出机器人攀爬楼梯最大高度及跨越横沟最大宽度的关系式。研究为爬行机器人的设计提供了进一步依据。  相似文献   
6.
石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点.由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域.综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景.  相似文献   
7.
ZnO纳米棒的微波合成及Pt掺杂对其气敏性能的改善   总被引:1,自引:0,他引:1  
以Zn(NO3)2·6H2O和NaOH为原料,CTAB为表面活性剂,微波加热到90℃,反应30min,成功制备了ZnO纳米棒.X射线衍射仪(XRD)和扫描电镜(SEM)结果表明,产物是六方纤锌矿结构ZnO纳米棒,长度为1~5μm,直径为50~100nm左右.对ZnO纳米棒进行了Pt掺杂,并对掺杂前后的气敏性能进行了对比...  相似文献   
8.
Tin dioxide(SnO2) and La-doped(1%,5%,10% in mass ratio) SnO2 samples were prepared via a hydrothermal method. The as-prepared powders were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM) . Results showed that the particle size of SnO2 decreased gradually with the increase of the doped La element. When used as anode materials of Li ion battery,the La-doped samples exhibited better cycling performance than the pure SnO2,and the cycling performance of the La-doped samples got better and better with the increase of the doped La. The better electrochemical performance of the doped material could be attributed to the doping of La element,which not only enabled SnO2 powders to have a good dispersivity but also reduced their particle size.  相似文献   
9.
以Zn(NO_3)_2为锌源、CTAB为表面活性剂,在微波辐照下90℃反应30min即可一步合成ZnO纳米棒,利用TG-DTA、XRD、SEM对合成材料的相组成及微观结构进行表征,并测试了纯ZnO及Pd修饰ZnO纳米棒的气敏特性。结果表明,微波辅助一步合成的ZnO纳米棒属于纤锌矿型六方晶系,直径为100~800nm、长度约2~3μm;对H_2S气体有较高的响应,但选择性不佳;利用贵金属增敏剂Pd(0.5wt%)来修饰ZnO纳米棒可显著提高其对H_2S气体的响应和选择性,并降低其工作温度,使其有望用于开发低温型高灵敏度的实用H_2S气体传感器。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号