首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
  国内免费   1篇
无线电   1篇
一般工业技术   3篇
  2020年   1篇
  2016年   1篇
  2014年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
γ-AlOOH、TiO2和SiCw为原料,通过反应烧结制备了多孔Al2TiO5-SiCw复合材料,研究了SiCw对Al2TiO5-SiCw复合材料物相、微观组织结构、孔隙率和抗压强度的影响。结果表明: 反应产物中主要物相有Al2TiO5、Al6Si2O13、TiC和SiO2。由于晶须分解速度快,SiCw可全部与TiO2反应生成TiC和SiO2。添加SiCw,一方面显著细化了Al2TiO5基复合材料的微观组织,生成的细小规则的TiC晶粒和存在于Al2TiO5晶界处的Al6Si2O13有利于抑制Al2TiO5晶粒长大,提高其抗压强度。另一方面,因为SiCw改变了原料中颗粒之间的堆积方式,使孔径增大、孔隙率显著提高。生成的一定量的SiO2对晶粒产生黏结,使得Al2TiO5基复合材料的孔洞骨架密实,提高了抗压强度,但当SiCw加入量多时,由于出现较多的玻璃相,会降低抗压强度。  相似文献   
2.
本研究以γ-AlOOH、TiO2和SiC为原料, 通过无压反应烧结制备了Al2TiO5多孔材料, 分析比较了SiC粒度和含量对合成产物的物相组成、显微组织、抗压强度、孔隙率和孔径分布的影响。结果表明: 反应产物的物相组成为Al2TiO5、Al6Si2O13、TiC、SiO2和Al2O3, 还有少量未反应的TiO2。SiC与TiO2反应生成TiC和SiO2, TiC颗粒弥散分布于多孔材料壁面或者骨架中, 而SiO2进一步与γ-AlOOH分解出的Al2O3反应生成Al6Si2O13晶须, 晶须交错分布于Al2TiO5颗粒之间或者孔洞中, 与TiC颗粒一起提高复合材料的抗压强度, 特别是采用小粒径SiC时, 对抗压强度的改善效果更加显著; 添加大粒径SiC后, 改变原有颗粒堆积状态, 可提高复合材料的孔隙率。但当SiC含量超过5wt%时, 因为生成较多低熔点的SiO2, 部分填充于多孔材料的孔隙中, 部分则分布于Al2TiO5晶粒之间, 既减小孔隙率, 又降低晶粒间结合强度和试样的抗压强度。  相似文献   
3.
为了提高芯棒尺寸并同时保持理想的沉积效率和合格的光学参数,采用气相轴向沉积法对影响芯棒尺寸的主要因素进行研究,优化沉积喷灯数量、包灯SiCl4流量和soot体提升速率。实验结果表明:三喷灯沉积工艺中,增加第一、第二包灯SiCl4原料流量至4.0 sl m、5.0 sl m且降低提升速率至85 mm/h时,沉积速率显著提高至15.8 g/mi n,soot体密度增大至0.319 g/cm3,芯棒尺寸增大至99.1 mm,同时兼顾沉积效率至52.2%,并保持良好的G.652D单模光纤折射率剖面。  相似文献   
4.
以γ-AlOOH和TiO_2为原料,添加不同质量分数SiC晶须(SiCw),采用无压反应烧结法制备多孔(Al_6Si_2O_(13)+TiC)/Al_2TiO_5复合材料,分析了SiCw质量分数对(Al_6Si_2O_(13)+TiC)/Al_2TiO_5复合材料孔隙率和抗压强度的影响,讨论了SiCw的强化机制。结果表明:不添加SiCw时,产物主要为Al_2TiO_5和少量Al_2O_3,还有少量未反应的TiO_2;加入SiCw之后,还形成了Al_6Si_2O_(13)和TiC相,TiC和Al_6Si_2O_(13)分别以规则颗粒状和晶须形态存在于Al_2TiO_5基体中。TiC颗粒与Al_6Si_2O_(13)晶须通过细化显微组织、裂纹偏转和晶须桥连机制,起到协同强化作用。SiCw的添加使孔隙率和抗压强度同时大幅度提高,随着SiCw质量分数的增加,(Al_6Si_2O_(13)+TiC)/Al_2TiO_5复合材料孔隙率降低,抗压强度提高的速率减小,当SiCw的质量分数为7.2%时,抗压强度最高,达到301.81 MPa。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号