首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
一般工业技术   2篇
  2020年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
为研究碳纤维环氧树脂复合材料在火灾环境下的热响应,考虑其在火灾环境下的热解过程,建立非线性热响应方程组,利用有限差分法计算分析单侧热流作用下的材料内部温度-时间历程与炭化规律。结果表明:建立的热响应方程组可以有效预测碳纤维环氧树脂的温度-时间历程,与实验值吻合较好;随着加热时间延长,炭化层范围逐渐扩大,温度趋于稳定,材料温度-深度分布由非线性转变为线性;随着深度增加,碳纤维环氧树脂复合材料温升速率减小,达到热解所需的时间更长,炭化过程变慢,且单位温度的密度变化量峰值随深度增加向低温方向移动;热解反应区中不同深度位置的材料剩余质量分数在同一温度下不同,深度越大剩余质量分数越小,炭化程度越高。  相似文献   
2.
为研究航空复合材料在火灾环境下的热响应,考虑材料热解过程,建立了复合材料热响应方程组,推导了显式有限差分格式,研究了玻璃纤维/酚醛树脂复合材料内部瞬态热响应与碳化规律。结果表明:建立的非线性热响应方程组与计算方法能够预测玻璃纤维/酚醛树脂复合材料的温度-时间历程,800 s时的受热表面温度达到了1048℃,背面温度为226℃,与实验值吻合较好;随着材料深度增加,材料达到热解温度所需的时间更长,材料密度下降速率随之降低,碳化过程变慢;热解反应区中不同深度位置的材料剩余质量分数在同一温度下略有不同,位置越深,剩余质量分数越小,碳化程度越高;随着时间推移,发生热解的材料比重增大,碳化范围逐步扩大,热解层厚度范围也逐渐扩大。   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号