首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   3篇
  国内免费   1篇
综合类   1篇
化学工业   11篇
石油天然气   4篇
一般工业技术   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   2篇
  2015年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
针对深水天然气水合物层固井对水泥浆体系低水化热、及现代生态文明建设对工业废料有效利用的双重要求,重点利用粉煤灰及矿渣对水泥浆体系水化热的控制效应制备了以常规波特兰水泥为主料、粉煤灰及矿渣为辅料的低水化热水泥浆体系.采用自研半绝热测试实验设备对水泥浆体系早期水化过程中温度进行了连续测量,以水泥浆体系最高温度(TMAX)及最大水化温升(TRISE)表征了粉煤灰及矿渣对水化热控制效应.实验结果表明,粉煤灰及矿渣均可大幅度降低水泥浆体系早期水化热.同时,后期力学性能测试结果显示复掺矿渣有助于水泥浆体系早期强度的发育;另外,结合文献报道复掺粉煤灰有利于水泥浆体系后期强度的发育,极大的改善了水泥石致密性及耐久性.因此,基于2:1:1(水泥:粉煤灰:矿渣)的质量配比制备了低水化热水泥浆体系CFS1-1,综合性能研究表明该低水化热水泥浆体系CFS1-1低温条件下具备较好的工程应用性能,为深水天然气水合物层固井水泥浆体系的设计提供了一种可行的方案,同时也实现了粉煤灰及矿渣等工业废料的高效及合理利用.  相似文献   
2.
为克服目前3次采油中水凝胶耐温抗盐性能差、机械强度低等问题,以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为聚合单体,通过水溶液聚合法合成水凝胶PBZD-1,基于单因素实验确定最佳制备工艺,并辅以常规改性和纳米改性两种实验方法进行功能强化改性,制备深度调剖用水凝胶PBZD-1-C和PBZD-1-M。采用FTIR、XRD、TG等表征水凝胶的化学结构、热稳定性等,进一步探究其吸水、耐温和抗盐等性能,并结合宏观性能和微观结构揭示其功能强化机制。结果显示:PBZD-1-C和PBZD-1-M的化学结构符合预期设计,热稳定性良好,350℃失重约20%,且具有良好的耐温抗盐性能,吸水倍率分别为198和249,可有效抵抗70 000 mg/L Na+、10 000mg/L Ca2+和Mg2+矿化度水;纳米二氧化硅、超细碳酸钙等材料主要通过自身三元刚性环状结构、成核剂及反应中心等赋予水凝胶优异的应用性能,使水凝胶的吸水、耐温和抗盐性能大幅提升。  相似文献   
3.
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)、对苯乙烯磺酸钠(SSS)和二甲基二烯丙基氯化铵(DMDAAC)为聚合单体,通过水溶液聚合法制备了高分子聚合物压裂液稠化剂FTW-1,与有机锆交联剂交联,考察了聚合反应温度、体系酸碱度、反应时间、单体浓度、引发剂加量等对高分子聚合物稠化剂FTW-1性能的影响,利用FTIR、TG等方法对高分子聚合物稠化剂FTW-1进行了表征。结果显示,高分子聚合物稠化剂最佳合成工艺为单体质量浓度为35%,pH值为7.8~8.0,引发剂加量为0.12%,反应温度为50 ℃,反应时间为4 h。红外及热重分析显示,该高分子聚合物稠化剂FTW-1分子结构符合预期设计,黏均分子量约为1.8×106,具有良好的热稳定性,可满足180 ℃施工需求。同时,也开展了压裂液性能,诸如溶解性能、增稠和交联性能、耐温耐剪切性能、抗微生物降解性能、破胶性能等的研究,结果表明压裂液各项性能均满足相关行业标准要求。   相似文献   
4.
用低场核磁共振技术考察了HN-1型缓凝剂对水泥浆体中可蒸发水的横向弛豫时间(T2)及状态演变过程的影响。结果表明:在初始水化阶段的150 min内,水泥浆GR(添加缓凝剂HN-1的水泥净浆)的弛豫峰峰形和峰顶位置均无明显变化,水泥浆G(纯水泥净浆)的弛豫峰峰形变窄且峰顶位置从2.15 ms迁移至0.95 ms,说明缓凝剂HN-1主要通过改变水泥浆体中不同状态水的存留时间来改变其水化进程。随养护时间的延长,硬化水泥石W0.44和WR0.5中可挥发水弛豫峰分布范围分别从0.11~4.75 ms变为0.08~0.58 ms、0.24~4.23 ms变为0.11~2.35 ms,总体趋向于短弛豫时间,表明水泥石中毛细水逐渐向凝胶水和物理结合水转化,水泥石养护龄期延长至25 d时,其内部凝胶结构水含量超过90%。利用XRD考察了缓凝剂对水泥浆水化产物的影响,结果表明:缓凝剂只改变水泥浆水化过程,对最终水化产物晶型及晶型结构不存在任何影响。  相似文献   
5.
首先合成了一种新型两性聚合物缓凝剂SN-3,然后采用红外光谱和元素分析等测试手段对其进行结构表征。其次,对其应用性能作了进一步研究,主要包括稠化时间、加量和温度敏感性等,实验结果表明应用性能满足现场施工要求。利用低场核磁共振测试技术重点研究了缓凝剂SN-3对油井水泥浆水化过程中横向弛豫时间T2分布的影响,在相同的水灰比、温度和水化时间下,对纯水泥浆C和掺有缓凝剂SN-3的水泥浆CHN的横向弛豫时间进行测试和分析,借助迁移速率和峰形指数两个参数表征水泥浆T2分布曲线的变化过程。最后,结合X衍射和扫描电镜(SEM)进一步探讨缓凝剂SN-3的缓凝作用原理。实验结果表明,缓凝剂使水泥浆中填充于絮凝结构之间的水的受缚程度减小,存在时间变长,转化为化学结合水所经历时间变长;缓凝剂SN-3主要通过沉淀和络合作用达到缓凝效果的。  相似文献   
6.
采用悬浮聚合法,以甲基丙烯酸十二烷基酯(LMA)、苯乙烯(St)、甲基丙烯酸羟乙酯(HEMA)为聚合单体,过氧化苯甲酰(BPO)为引发剂,聚乙烯醇(PVA)为分散剂,二乙烯基苯(DVB)为交联剂,合成了一种树脂并应用到固井水泥石中。通过正交实验考察了单体、分散剂、引发剂、交联剂、温度对三元共聚树脂吸油性能的影响。结果表明:当m(LMA)∶m(St)∶m(HEMA)=6∶3∶1、w(PVA)=2.5%(以单体的总质量为基准,下同)、w(BPO)=1.0%、w(DVB)=0.5%、t=85℃时,三元共聚树脂的吸油性能最佳,二甲苯的吸油率达12.78 g/g。通过人工造缝,对加入树脂水泥石的渗透率和抗压强度进行了考察,结果表明:在25℃下,养护30 d后,水泥石渗透率随树脂的增加而降低,在w(树脂)=8.0%(以水泥质量为基准,下同)时低至2.50×10~(-4)μm~2,而抗压强度随树脂的增加先增加后减小,在w(树脂)=2.0%时达到最大值20.8 MPa,抗压强度恢复率达70.5%。  相似文献   
7.
以三乙醇胺为原料通过氯化反应、烷基化反应和磺化反应合成了一种星型表面活性剂,其具有3条疏水碳链和3个磺酸盐亲水基团。研究发现该表面活性剂具有很高的表面活性其临界胶束浓度CMC为4.93×10-5 mol/L,此时的界面张力为32.5 mN/m。同时,研究了星型表面活性剂浓度和NaOH浓度对原油/水界面张力的影响。研究发现,少量的星型表面活性剂就能有效的降低原油/水体系的界面张力。当表面活性剂浓度为0.1 g/L,NaOH浓度为0.5 g/L,温度为50 ℃时的原油/水体系的界面张力降至1.1×10-4 mN/m。该界面张力值已经属于超低界面张力,满足驱油用表面活性剂的基本条件。自乳化实验表明,该表面活性剂具有很好的乳化能力,表面活性剂浓度在0.1 g/L时就能将原油乳化成粒径为5 ~ 20 μm的O/W乳状液。  相似文献   
8.
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)和对苯乙烯磺酸钠(SSS)为聚合单体采用反相乳液聚合法制备了一种新型水基钻井液降滤失剂PAAS,通过正交实验法确定了其最佳合成条件,采用红外光谱及元素分析对其结构进行了表征,实验表明共聚物PAAS分子结构满足预期设计;此外,热综合分析显示共聚物PAAS具备良好的高温稳定性。钻井液流变性实验、老化实验及失水实验表明:降滤失剂质量加量为1.5%时,钻井液流变性良好,高温160 ℃老化前后失水量分别为FLAPI=8.4 mL和FLAPI=10.2 mL;吸附实验、滤饼微观结构和横向弛豫时间T2表明该降滤失剂PAAS主要通过吸附作用改善钻井液体系滤失性能。  相似文献   
9.
冯茜  刘先杰  彭志刚  霍锦华  刘欢 《精细化工》2019,36(7):1453-1458
基于天然气水合物低温、高压及电解质条件下的分解特性,以常规波特兰油井水泥为基料,外掺入微胶囊型热控材料(PCM-1),制备了一种低水化热水泥浆体系。采用自研半绝热测试实验设备对水泥浆体系早期水化过程中的温度进行了连续测量,以水泥浆体系最高温度(T_m)及最大水化温升(Tr)表征了PCM-1对水泥浆体系水化热的控制效应。结果表明,PCM-1的含量15%时(以水泥的质量为基准,下同),该水泥浆较纯水泥浆的水化最高温度下降了22.3℃,最大水化温升下降了23.6℃;24 h及48 h水化热分别下降了7.68×10~4 J及7.28×10~4 J。微胶囊能够有效地控制水泥浆的水化温升及水化热,大幅降低了深水水合物层的固井风险。  相似文献   
10.
以氨基磺酸(SA)为芯材、乙基纤维素(EC)为壁材,采用油相相分离法制备了EC/SA微胶囊。研究了EC黏度、芯壁质量比及搅拌速率等因素对微胶囊包封率的影响。利用红外光谱(FT-IR)、扫描电镜(SEM)对所得微胶囊进行表征,并测试其在不同温度下的缓释性。最佳工艺条件为:EC黏度为180~220 m Pa·s、芯壁比为10∶3、搅拌速率为500 r/min。红外光谱和扫描电镜结果表明,氨基磺酸被成功包覆于乙基纤维素内。释放实验结果表明,在80℃时释放率为78. 13%;随着释放环境温度的升高,微胶囊释放速率和累积释放率均增加,缓释时间可达80 min,满足现场施工需求,可实现地层深部酸化;对微胶囊释放效果进行数学拟合,结果表明,释放模型符合一级动力学模型,释放行为主要受囊芯从囊壁中延缓扩散控制。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号