首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   6篇
电工技术   1篇
化学工业   7篇
金属工艺   2篇
机械仪表   2篇
能源动力   2篇
轻工业   2篇
一般工业技术   9篇
自动化技术   2篇
  2023年   1篇
  2021年   2篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2005年   1篇
  2003年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
In this study, nano-AlN particles were introduced into pure Mg matrix through the powder metallurgy technique incorporating microwave assisted two-directional sintering followed by hot extrusion. The effect of varying volume fraction of nano-AlN addition on the microstructural and mechanical properties of pure Mg was investigated. Microstructural characterisation revealed marginal grain refinement due to the fairly uniform distribution of AlN nano-particulates. X-ray diffraction results indicated basal texture weakening in Mg/0·2AlN composite. Tensile property measurements revealed an overall increase in strength properties and ductility. Among the developed composites, Mg/0·8AlN displayed superior strength (~30% improvement) and Mg/0·2AlN showed enhanced ductility (~80% enhancement). Under compressive loading, the developed Mg/AlN nanocomposite formulations exhibited improved strength properties without significant effect on compressibility.  相似文献   
2.
Nanocomposites of natural rubber (NR) and pristine clay (clay) were prepared by latex mixing, then crosslinked with phenolic resin (PhOH). For comparative study, the PhOH‐crosslinked neat NR was also prepared. Influence of clay loading (i.e., 1, 3, 5, and 10 phr) on mechanical properties and structural change of PhOH‐crosslinked NR/clay nanocomposites was studied through X‐ray diffraction (XRD), transmission electron microscopic (TEM), wide‐angle X‐ray diffraction (WAXD), tensile property measurement, and Fourier transform infrared spectroscopy (FTIR). XRD and TEM showed that the clay was partly intercalated and aggregated, and that the dispersion state of clay was non‐uniform at higher clay loading (>5 phr). From tensile test measurement, it was found that the pronounced upturn of tensile stress was observed when the clay loading was increased and a maximum tensile strength of the PhOH‐crosslinked NR/clay nanocomposites was obtained at 5 phr clay. WAXD observations showed that an increased addition of clay induced more orientation and alignment of NR chains, thereby lowering onset strain of strain‐induced crystallization and promoting crystallinity of the NR matrix during tensile deformation. FTIR investigation indicated a strong interfacial adhesion between NR matrix and clay filler through a phenolic resin bridge. This suggested that the PhOH did not only act as curative agent for crosslinking of NR, but it also worked as coupling agent for promoting interfacial reaction between NR and clay. The presence of strong interfacial adhesion was found to play an important role in the crystallization process, leading to promotion of mechanical properties of the PhOH‐crosslinked NR/clay nanocomposites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43214.  相似文献   
3.
Nanocomposites of natural rubber (NR)/polypropylene (PP) (80/20 wt %) blends filled with 5 phr pristine clay were prepared by melt‐mixing process. Effects of clay incorporation technique via conventional melt‐mixing (CV) and masterbatch mixing (MB) methods on nanostructure and properties of the blend nanocomposites were investigated. The XRD, SAXS, WAXD, and TEM results showed that the clays in the NR/PP blend nanocomposites were presented in different states of dispersion and were locally existed at the interface between NR and PP as well as dispersed in the NR matrix. The presence of clay caused unique morphological evolution such as fine fibrillar PP domains. The tensile strength was improved over the unfilled NR/PP blends by 53% and 224%, and the storage modulus at 25 °C was increased by 78% and 120% for the NR/PP/clay nanocomposites prepared by CV and MB methods, respectively. Significant improvement in both properties was particularly obtained from the MB method due to finer dispersion fibrillar PP phase in the NR matrix and stronger interfacial adhesion between NR and PP fibers, as suggested from DMA. The oil resistance of blend nanocomposites was also improved over that of the unfilled NR/PP blend, and this property was further progressed by the masterbatch mixing method. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44574.  相似文献   
4.
Date palm fiber (DPF) derived from agrowaste was utilized as a new precursor for the optimized synthesis of a cost-effective, nanostructured, powder-activated carbon (nPAC) for aluminum (Al3+) removal from aqueous solutions using carbonization, KOH activation, response surface methodology (RSM) and central composite design (CCD). The optimum synthesis condition, activation temperature, time and impregna-tion ratio were found to be 650 ℃, 1.09 hour and 1:1, respectively. Furthermore, the optimum conditions for removal were 99.5%and 9.958 mg·g-1 in regard to uptake capacity. The optimum conditions of nPAC was analyzed and characterized using XRD, FTIR, FESEM, BET, TGA and Zeta potential. Moreover, the adsorption of the Al3+ conditions was optimized with an integrated RSM-CCD experimental design. Regression results revealed that the adsorption kinetics data was well fitted by the pseudo-second order model, whereas the adsorption isotherm data was best represented by the Freundlich isotherm model. Optimum activated carbon indicated that DPF can serve as a cost-effective precursor adsorbent for Al3+removal.  相似文献   
5.

In the concrete industry, compressive strength is the most essential mechanical property. Therefore, insufficient compressive strength may lead to dangerous failure and, thus, becomes very difficult to repair. Consequently, early, and precise prediction of concrete strength is a major issue facing researchers and concrete designers. In this study, high-order response surface methodology (HORSM) is used to develop a prediction model to accurately predict the compressive strength of high-strength concrete (HSC). Different polynomial degrees order ranging from 2 to 5 is used in this model. The HORSM, with five-order polynomial degree, model outperforms several artificial intelligence (AI) modeling approaches which are carried out widely in the prediction of HSC compression strength. Besides, support vector machine (SVM) model was developed in this study and compared with the HORSM. The HORSM models outperformed the SVM models according to different statistical measures. Additionally, HORSM models managed to perfectly predict the HSC compressive strength in less than one second to accomplish the learning processes. While, other AI models including SVM much longer time. Lastly, the use of HORSM for the first time in the concrete technology field provided much accurate prediction results and it has great potential in the field of concrete technology.

  相似文献   
6.
Porous ceramics of lead zirconate titanate (PZT) were prepared by sintering powder compacts consisting of PZT and stearic acid powders in an air atmosphere; stearic acid was added as a pore-forming agent (PFA). The dielectric, elastic and piezoelectric properties of uniformly porous PZT ceramics were investigated as a function of the porosity volume fraction. Furthermore, a beam-shaped PZT actuator sample with a graded porosity content across its thickness was fabricated by sintering PFA-graded powder compacts. The electric-field-induced bending displacement characteristics of the actuator samples were measured by using strain gauges and were found to be in good agreement with the theoretical predication based on a classical lamination theory.  相似文献   
7.
Up to now, poly-para-phenylene (PPP) can be considered as the stiffest and strongest polymer under ambient temperature conditions. As an amorphous thermoplastic, a thermal treatment will not change the material’s morphology, but may influence its inner free volume (physical aging) and corresponding mechanical properties. This was investigated in this study with regard to the hardness and fracture toughness of PPP. It turned out that under the thermal conditions chosen, only moderate effects on these properties could be detected. Besides it was of interest how PPP compares in these properties relative to other advanced thermoplastics (neat and short glass fiber reinforced). Various features, such as striations and parabolic holes, on the fracture surfaces of PPP were also discussed.  相似文献   
8.
Composite materials, in most cases fiber reinforced polymers, are nowadays used in many applications in which light weight and high specific modulus and strength are critical issues. The constituents of these materials and their special advantages relative to traditional materials are described in this paper. Further details are outlined regarding the present markets of polymer composites in Europe, and their special application in the automotive industry. In particular, the manufacturing of parts from thermoplastic as well as thermosetting, short and continuous fiber reinforced composites is emphasized.  相似文献   
9.
To address the problem of fossil fuel usage at the Missouri University of Science and Technology campus, using of alternative fuels and renewable energy sources can lower energy consumption and hydrogen use. Biogas, produced by anaerobic digestion of wastewater, organic waste, agricultural waste, industrial waste, and animal by-products is a potential source of renewable energy. In this work, we have discussed the design of combined heat, hydrogen and power (CHHP) system for the campus using local resources. An energy flow and resource availability study is hydrogen recovery, cleaning and energy End-Uses on the university campus from CHHP system. Following the resource assessment study, our team selects Fuel Cell Energy direct fuel cell (DFC) 1500TM unit as a molten carbonate fuel cell. The CHHP system provides the hydrogen for transportation, back-up power and other needs. The research presented in this paper was performed as part of the 2012 Hydrogen Student Design Contest. In conclusion, the CHHP system will be able to reduce fossil fuel usage, greenhouse gas (GHG) emissions and hydrogen generated is used to power different applications on the university campus.  相似文献   
10.
High-temperature tensile deformation of 6082-T4 Al alloy was conducted in the range of 623–773 K at various strain rates in the range of 5 × 10−5 to 2 × 10−2 s−1. Stress dependence of the strain rate revealed a stress exponent, n of 7 throughout the ranges of temperatures and strain rates tested. This stress exponent is higher than what is usually observed in Al–Mg alloys under similar experimental conditions, which implies the presence of threshold stress. This behavior results from dislocation interaction with second phase particles (Mg2Si). The experimental threshold stress values were calculated, based on the finding that creep rate is viscous glide controlled, based on creep tests conducted on binary Al–1Mg at 673 K, that gave n a value of 3. The threshold stress (σ o) values were seen to decrease exponentially with temperature. The apparent activation energy for 6082-T4 was calculated to be about 245 kJ mol−1, which is higher than the activation energy for self-diffusion in Al (Q d = 143 kJ mol−1) and for the diffusion of Mg in Al (115–130 kJ mol−1). By incorporating the threshold stress in the analysis, the true activation energy was calculated to be about 107 kJ mol−1. Analysis of strain rate dependence in terms of the effective stress (σ − σ o) using normalized parameters, revealed a single type of deformation behavior. A plot of normalized strain rate () versus normalized effective stress (σ − σ o)/G, on a double logarithmic scale, gave an n value of 3. Ehab A. El-Danaf—on leave from the Department of Mechanical Design and Production, College of Engineering, Cairo University, Egypt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号