首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2187篇
  免费   149篇
  国内免费   10篇
电工技术   29篇
综合类   5篇
化学工业   522篇
金属工艺   46篇
机械仪表   86篇
建筑科学   60篇
矿业工程   3篇
能源动力   202篇
轻工业   236篇
水利工程   17篇
石油天然气   31篇
无线电   206篇
一般工业技术   469篇
冶金工业   84篇
原子能技术   17篇
自动化技术   333篇
  2024年   7篇
  2023年   72篇
  2022年   131篇
  2021年   160篇
  2020年   113篇
  2019年   120篇
  2018年   137篇
  2017年   112篇
  2016年   139篇
  2015年   87篇
  2014年   150篇
  2013年   220篇
  2012年   134篇
  2011年   132篇
  2010年   101篇
  2009年   90篇
  2008年   63篇
  2007年   56篇
  2006年   48篇
  2005年   34篇
  2004年   24篇
  2003年   23篇
  2002年   18篇
  2001年   16篇
  2000年   7篇
  1999年   14篇
  1998年   27篇
  1997年   8篇
  1996年   17篇
  1995年   9篇
  1994年   9篇
  1993年   7篇
  1992年   9篇
  1991年   8篇
  1990年   5篇
  1989年   2篇
  1988年   5篇
  1987年   5篇
  1986年   7篇
  1985年   7篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有2346条查询结果,搜索用时 0 毫秒
1.
In this study, AA7075 aluminum matrix composites reinforced with the combination of SiC, Al2O3, and B4C particles were fabricated by the liquid metal infiltration method. The effects of the relative ratio of B4C and Al2O3 particles on the microstructural, wear, and corrosion features of the composite samples were analyzed using XRD, light metal microscopy, SEM, EDS, Brinell hardness, ball-on-disc type tribometer, and potentiodynamic polarization devices. It was determined that infiltration occurred more successfully, and homogenously distributed particles with reduced porosity were obtained as the amount of Al2O3 increased. Worn surface studies revealed that the specimens were predominantly worn by abrasion and adhesion. The increase in B4C/Al2O3 ratio caused a decrease in the hardness and wear strength, whereas it increased the corrosion resistance.  相似文献   
2.
3.
4.
Journal of Communications Technology and Electronics - This paper implements mathematically rigorous extended trial function algorithm to address cubic–quartic optical solitons in...  相似文献   
5.
The performance of low-to-intermediate temperature (400–800?°C) solid oxide fuel cells (SOFCs) depends on the properties of electrolyte used. SOFC performance can be enhanced by replacing electrolyte materials from conventional oxide ion (O2-) conductors with proton (H+) conductors because H+ conductors have higher ionic conductivity and theoretical electrical efficiency than O2- conductors within the target temperature range. Electrolytes based on cerate and/or zirconate have been proposed as potential H+ conductors. Cerate-based electrolytes have the highest H+ conductivity, but they are chemically and thermally unstable during redox cycles, whereas zirconate-based electrolytes exhibit the opposite properties. Thus, tailoring the properties of cerate and/or zirconate electrolytes by doping with rare-earth metals has become a main concern for many researchers to further improve the ionic conductivity and stability of electrolytes. This article provides an overview on the properties of four types of cerate and/or zirconate electrolytes including cerate-based, zirconate-based, single-doped ceratezirconate and hybrid-doped ceratezirconate. The properties of the proton electrolytes such as ionic conductivity, chemical stability and sinterability are also systematically discussed. This review further provides a summary of the performance of SOFCs operated with cerate and/or zirconate proton conductors and the actual potential of these materials as alternative electrolytes for proton-conducting SOFC application.  相似文献   
6.
Two-dimensional MoS2 nanoparticles (2D-nps) exhibit artificial enzyme properties that can be regulated at bio-nanointerfaces. We discovered that protein lipase is able to tune the peroxidase-like activity of MoS2 2D-nps, offering low-nanomolar, label-free detection and identification in samples with unknown identity. The inhibition of the peroxidase-like activity of the MoS2 2D-nps was demonstrated to be concentration dependent, and as low as 5 nm lipase was detected with this approach. The results were compared with those obtained with several other proteins that did not display any significant interference with the nanozyme behavior of the MoS2 2D-nps. This unique response of lipase was characterized and exploited for the successful identification of lipase in six unknown samples by using qualitative visual inspection and a quantitative statistical analysis method. The developed methodology in this approach is noteworthy for many aspects; MoS2 2D-nps are neither labeled with a signaling moiety nor modified with any ligands for signal readout. Only the intrinsic nanozyme activity of the MoS2 2D-nps is exploited for this detection approach. No analytical equipment is necessary for the visual detection of lipase. The synthesis of the water-soluble MoS2 2D-nps is low costing and can be performed in bulk scale. Exploring the properties of 2D-nps and their interactions with biological materials reveals highly interesting yet instrumental features that offer the development of novel bioanalytical approaches.  相似文献   
7.
Hybrid organic–inorganic perovskites (HOIPs), in particular 3D HOIPs, have demonstrated remarkable properties, including ultralong charge‐carrier diffusion lengths, high dielectric constants, low trap densities, tunable absorption and emission wavelengths, strong spin–orbit coupling, and large Rashba splitting. These superior properties have generated intensive research interest in HOIPs for high‐performance optoelectronics and spintronics. Here, 3D hybrid organic–inorganic perovskites that implant chirality through introducing the chiral methylammonium cation are demonstrated. Based on structural optimization, phonon spectra, formation energy, and ab initio molecular dynamics simulations, it is found that the chirality of the chiral cations can be successfully transferred to the framework of 3D HOIPs, and the resulting 3D chiral HOIPs are both kinetically and thermodynamically stable. Combining chirality with the impressive optical, electrical, and spintronic properties of 3D perovskites, 3D chiral perovskites is of great interest in the fields of piezoelectricity, pyroelectricity, ferroelectricity, topological quantum engineering, circularly polarized optoelectronics, and spintronics.  相似文献   
8.
A novel traveling-wave electrode utilizing capacitively loaded T-rail elements was developed for low-voltage high-speed substrate-removed GaAs/AlGaAs electrooptic modulators. Electrodes with varying dimensions were fabricated and characterized. Electrode phase velocity, characteristic impedance, loss coefficient, and capacitive loading were extracted from the measured s-parameters up to 40 GHz. Electrode was also simulated using a finite-element solver. The measured and calculated electrode capacitance values were found to be in excellent agreement, showing that the electrode can be precisely designed. Approaches were outlined to provide a group velocity-matched very high-speed modulator electrode suitable for a low drive-voltage substrate-removed GaAs/AlGaAs electro-optic modulator  相似文献   
9.
The solutions of the spherically symmetric, linear, isothermal, and transient viscoelasticity problems via reciprocity theorem have been investigated for a specific material. The integral form of stress–strain relations has been used. The Laplace transform of a viscoelastic state, which is necessary for the integral equation arising as a result of reciprocity theorem, has been derived. This integral equation has been solved by Laplace transform. A sample problem has been solved to test the presented formulation. A numerical application of the analytic solution of this problem has been given.  相似文献   
10.
The abrasion characteristics of Tencel fabrics were evaluated by Martindale abrasion and laundering, and the breakdown mechanism of fibers was surveyed by scanning electron microscopy. The fabric was subjected to pad‐dry‐cure treatment with two different types of modified dimethyloldihydroxyethylene urea resins (Reaktant DH and Reaktant FC). Although the degree of dry abrasion varied with different resins, the damage exhibited by individual fibers differed little from untreated to resin‐treated; the major mechanism of abrasion was through friction, and the mechanism of fiber failure was multiple splitting and transverse cracking. In untreated Tencel, the characteristic feature of wet abrasion was massive fibrillation, and in crosslinked fabrics, the wet abrasion mechanism was through fiber slippage and slicing action, although in the Reaktant FC‐treated fabric, the wet abrasion mechanism was more through slicing than through fiber splitting. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1391–1398, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号