首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   2篇
电工技术   1篇
化学工业   22篇
金属工艺   1篇
机械仪表   3篇
建筑科学   2篇
轻工业   1篇
无线电   5篇
一般工业技术   8篇
冶金工业   6篇
自动化技术   3篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   2篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
BACKGROUND: Over the past several decades methyl tert‐butyl ether (MTBE) as additive to gasoline, intended to either boost ratings of fuel or to reduce air pollution, has been accepted worldwide. Since MTBE has high water solubility, the occurrence of fuel spills or leaks from underground storage tanks or transferring pipeline has led to the contamination of natural waters. In this study the degradation of aqueous MTBE at relatively high concentrations was investigated by a UV‐visible/ZnO/H2O2 photocatalytic process. The effects of important operational parameters such as pH, amount of H2O2, catalyst loading and irradiation time were also investigated. Concentration of MTBE and intermediates such as tert‐butyl formate and tert‐butyl alcohol were measured. RESULTS: Time required for complete degradation increased from 20 to 150 min when the initial concentration was increased from 10 to 500 mg L?1. The first‐order rate constants for degradation of MTBE were estimated to be 0.183–0.022 min?1 as the concentration increased from 10 to 500 mg L?1. Study of the overall mineralization monitored by total organic carbon analysis showed that at an initial concentration of 100 mg L?1 MTBE complete mineralization was obtained after 100 min under UV‐visible/ZnO/H2O2 photocatalysis. CONCLUSION: The data presented in this paper clearly indicated that UV‐visible/ZnO/O2 as an advanced oxidation process provides an efficient treatment alternative for the remediation of MTBE‐contaminated waters. Copyright © 2008 Society of Chemical Industry  相似文献   
2.
Deposition of zinc oxide films from aqueous solutions containing complex Zn2+ ions on soda-lime substrates were studied by two-stage chemical deposition (TSCD) process. It was shown that the film thickness can be controlled by the number of dipping stages. Nano-layers were produced with less than nine times dipping stages. Greater dipping numbers resulted in film thickness exceeding 100 nm. The growth rate obeyed double-stage zeroth order with respect to the concentration and first order with respect to the temperature. This rate was proportional to the difference between the temperature of the hot water and the substrate. Overall activation energy of 17.20 ± 0.42 kJ mol−1 and frequency factor of 2.81 ± 0.07 μm s−1 was determined for ZnO deposition. These values were attributed to two resistances. One resistance corresponded with film heat transfer mechanism. The other was attributed to species attachment to the solid substrate. A modification to the diffuse-interface kinetic model was devised for explanation of the latter. EDAX (electron dispersive elemental analysis), XRD (X-ray diffraction) and SEM (scanning electron microscopy) were used to characterize the layer formed. These methods showed that the product consisted solely of pure elliptical ZnO grains.  相似文献   
3.
Construction of high efficiency and stable Li metal anodes is extremely vital to the breakthrough of Li metal batteries. In this study, for the first time, groundbreaking in situ plasma interphase engineering is reported to construct high-quality lithium halides-dominated solid electrolyte interphase layer on Li metal to stabilize & protect the anode. Typically, SF6 plasma-induced sulfured and fluorinated interphase (SFI) is composed of LiF and Li2S, interwoven with each other to form a consecutive solid electrolyte interphase. Simultaneously, brand-new vertical Co fibers (diameter: ≈5 µm) scaffold is designed via a facile magnetic-field-assisted hydrothermal method to collaborate with plasma-enhanced Li metal anodes (SFI@Li/Co). The Co fibers scaffold accommodates active Li with mechanical integrity and decreases local current density with good lithiophilicity and low geometric tortuosity, supported by DFT calculations and COMSOL Multiphysics simulation. Consequently, the assembled symmetric cells with SFI@Li/Co anodes exhibit superior stability over 525 h with a small voltage hysteresis (125 mV at 5 mA cm−2) and improved Coulombic efficiency (99.7%), much better than the counterparts. Enhanced electrochemical performance is also demonstrated in full cells with commercial cathodes and SFI@Li/Co anode. The research offers a new route to develop advanced alkali metal anodes for energy storage.  相似文献   
4.
An experimental study was conducted to evaluate the effect of frequency and self‐heating on fatigue behavior of two unreinforced and two short glass fiber reinforced thermoplastic polymers. Load‐controlled fatigue tests were conducted under fully reversed (R = ?1) and R = 0.1 conditions with specimens loaded in either longitudinal or transverse direction to the mold flow direction. Effect of frequency on fatigue life was evaluated at 23 and 125°C and for a range of frequencies between 0.063 and 20 Hz. Incremental step frequency tests were also performed at different stress ratios and stress levels. Surface temperature rise was found to be material, frequency, and stress level dependent. Three energy‐based models were applied to the incremental step frequency data and relationships were developed for each material to estimate surface temperature rise as a function of test frequency and stress level. Relationships were also developed to assess critical frequency for the unreinforced thermoplastics at a given stress level above which surface temperature does not stabilize. POLYM. COMPOS., 55:2355–2367, 2015. © 2015 Society of Plastics Engineers  相似文献   
5.
6.
The surging interest in high performance, low‐cost, and safe energy storage devices has spurred tremendous research efforts in the development of advanced electrode active materials. Herein, the in situ growth of zinc–iron layered double hydroxide (Zn–Fe LDH) on graphene aerogel (GA) substrates through a facile, one‐pot hydrothermal method is reported. The strong interaction and efficient electronic coupling between LDH and graphene substantially improve interfacial charge transport properties of the resulting nanocomposite and provide more available redox active sites for faradaic reactions. An LDH–GA||Ni(OH)2 device is also fabricated that results in greatly enhanced specific capacity (187 mAh g?1 at 0.1 A g?1), outstanding specific energy (147 Wh kg?1), excellent specific power (16.7 kW kg?1), along with 88% capacity retention after >10 000 cycles. This approach is further extended to Ni–MH and Ni–Cd batteries to demonstrate the feasibility of compositing with graphene for boosting the energy storage performance of other well‐known Ni‐based batteries. In contrast to conventional Ni‐based batteries, the nearly flat voltage plateau followed by a sloping potential profile of the integrated supercapacitor–battery enables it to be discharged down to 0 V without being damaged. These findings provide new prospects for the design of high‐performance and affordable superbatteries based on earth‐abundant elements.  相似文献   
7.
8.
In this work, different sol solutions with various titanium tetraisopropoxide (TIP)/glacial acetic acid ratios in 2‐propanol with 5 wt % poly(vinyl pyrrolidone) (PVP) (Mw = 360,000 g/mol) were prepared and electrospun. Composition of the prepared sols and as‐spun TiO2/PVP nanofibers were determined by Fourier transform infrared and Raman spectroscopy methods. Morphology of the electrospun TiO2/PVP nanofibers was studied by scanning electron microscopy and transmission electron microscopy (TEM) techniques. Rheometry measurements of the sol solutions showed decrease of viscosity upon the addition of TIP to the polymer solutions with constant polymer and acid concentrations. The sol solution having the lowest viscosity (at shear rate 10 s?1) but the highest TIP/glacial acetic acid ratio showed beaded nanofibers morphology when electrospun under 10 and 12 kV applied voltage while injection rate, needle tip to collector distance, and needle gauge were kept constant. However, smooth electrospun TiO2/PVP composite nanofibers with the average nanofibers diameters (148 ± 79 nm) were achieved under the same condition when applied voltage increased to 15 kV. TEM micrographs of the electrospun TiO2/PVP nanofiber showed that the TiO2 particles with continuous structure are formed at the middle of the nanofiber and distributed along its axis. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46337.  相似文献   
9.
M. Vaezi  M. Moghiman 《Fuel》2011,90(2):878-885
Combustion of heavy fuel oils is a major source of production of particulate emissions and ash, as well as considerable volumes of SOx and NOx. Gasification is a technologically advanced and environmentally friendly process of disposing heavy fuel oils by converting them into clean combustible gas products. Thermochemical equilibrium modeling is the basis of an original numerical method implemented in this study to predict the performance of a heavy fuel oil gasifier. The model combines both the chemical and thermodynamic equilibriums of the global gasification reaction in order to predict the final syngas species distribution. Having obtained the composition of the produced syngas, various characteristics of the gasification process can be determined; they include the H2:CO ratio, process temperature, and heating value of the produced syngas, as well as the cold gas efficiency and carbon conversion efficiency of the process. The influence of the equivalence ratio, oxygen enrichment (the amount of oxygen available in the gasification agent), and pressure on the gasification characteristics is analyzed. The results of simulations are compared with reported experimental measurements through which the numerical model is validated. The detailed investigation performed in the course of this study reveals that the heavy oil gasification is a feasible process that can be utilized to generate a syngas for various industrial applications.  相似文献   
10.
Solubility is one of the most indispensable physicochemical properties determining the compatibility of components of a blending system. Research has been focused on the solubility of carbon dioxide in polymers as a significant application of green chemistry. To replace costly and time-consuming experiments, a novel solubility prediction model based on a decision tree, called the stochastic gradient boosting algorithm, was proposed to predict CO2 solubility in 13 different polymers, based on 515 published experimental data lines. The results indicate that the proposed ensemble model is an effective method for predicting the CO2 solubility in various polymers, with highly satisfactory performance and high efficiency. It produces more accurate outputs than other methods such as machine learning schemes and an equation of state approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号