首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   6篇
  国内免费   1篇
电工技术   1篇
化学工业   51篇
金属工艺   5篇
机械仪表   3篇
建筑科学   2篇
能源动力   6篇
轻工业   5篇
水利工程   1篇
石油天然气   13篇
无线电   4篇
一般工业技术   21篇
冶金工业   6篇
原子能技术   4篇
自动化技术   14篇
  2023年   3篇
  2022年   4篇
  2021年   13篇
  2020年   4篇
  2019年   2篇
  2018年   11篇
  2017年   4篇
  2016年   5篇
  2015年   5篇
  2014年   6篇
  2013年   15篇
  2012年   7篇
  2011年   11篇
  2010年   9篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2001年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
1.
2.
Circular microfluidic channels are in great demand since they are more realistic in mimicking physiological flow systems, generating axis-symmetrical flow, and achieving uniform shear stress. A typical microchannel with rectangular cross section can induce non-physiological gradients of shear rate, pressure, and velocity. This paper presents a novel method of fabricating microfluidic channels with circular and elliptical cross sections through grayscale dual-projection lithography. Our method utilizes two projecting systems to expose grayscale image face-to-face and simultaneously polymerize the photocurable material. The cross-sectional profiles of the fabricated microchannels are consistent with mathematical predictions and, therefore, demonstrate the capability of controlling the channel shapes precisely. Customized circular microchannels can be generated with complex features such as junctions, bifurcations, hierarchies, and gradually changed diameters. This method is capable of fabricating circular channels with a wide range of diameters (39 μm–2 mm) as well as elliptical channels with a major-to-minor axis ratio up to 600%. Microfluidic devices with circular cross sections suitable for particle analysis were made as a demonstrative application in nanoparticle binding and distribution within a mimetic blood vessel. A ready-to-use microfluidic device with customized circular channels can be fabricated within 1 h without the need of clean room or expensive photolithography devices.  相似文献   
3.
4.
A novel coronavirus of zoonotic origin(SARSCoV-2)has recently been recognized in patients with acute respiratory disease.COVID-19 causative agent is structurally and genetically similar to SARS and bat SARS-like coronaviruses.The drastic increase in the number of coronavirus and its genome sequence have given us an unprecedented opportunity to perform bioinformatics and genomics analysis on this class of viruses.Clinical tests like PCR and ELISA for rapid detection of this virus are urgently needed for early identification of infected patients.However,these techniques are expensive and not readily available for point-of-care(POC)applications.Currently,lack of any rapid,available,and reliable POC detection method gives rise to the progression of COVID-19 as a horrible global problem.To solve the negative features of clinical investigation,we provide a brief introduction of the general features of coronaviruses and describe various amplification assays,sensing,biosensing,immunosensing,and aptasensing for the determination of various groups of coronaviruses applied as a template for the detection of SARS-CoV-2.All sensing and biosensing techniques developed for the determination of various classes of coronaviruses are useful to recognize the newly immerged coronavirus,i.e.,SARS-CoV-2.Also,the introduction of sensing and biosensing methods sheds light on the way of designing a proper screening system to detect the virus at the early stage of infection to tranquilize the speed and vastity of spreading.Among other approaches investigated among molecular approaches and PCR or recognition of viral diseases,LAMP-based methods and LFAs are of great importance for their numerous benefits,which can be helpful to design a universal platform for detection of future emerging pathogenic viruses.  相似文献   
5.
Transmission time optimisation is one of the key considerations of cognitive network design. There are many studies in cognitive radio networks (CRNs) focusing on finding the best transmission time for secondary users (SUs) to maximise transmission or energy efficiency. While longer sensing duration leads to a higher sensing accuracy and causes less interference, the SU spends less time for transmission and more energy on sensing spectrum. On the other hand, when the transmission duration becomes longer, although the SU has more opportunities to access the channel, it may encounter higher interference due to primary user (PU) returns and the probability of collision becomes higher. In this article, in a decentralised slotted protocol for CRN, the SU spectrum access is proved as a renewal process, then the interference due to PU return during SU transmission, the missed opportunities due to waiting for the channel to become idle and the energy consumed by the SU in the whole spectrum access process including idling energy, transmission energy and sensing energy consumption are formulated and integrated into newly defined efficiency to obtain the optimum transmission time and waiting time.  相似文献   
6.
Neuromodulation tools are useful to decipher and modulate neural circuitries implicated in functions and diseases. Existing electrical and chemical tools cannot offer specific neural modulation while optogenetics has limitations for deep tissue interfaces, which might be overcome by miniaturized optoelectronic devices in the future. Here, a 3D magnetic hyaluronic hydrogel is described that offers noninvasive neuromodulation via magnetomechanical stimulation of primary dorsal root ganglion (DRG) neurons. The hydrogel shares similar biochemical and biophysical properties as the extracellular matrix of spinal cord, facilitating healthy growth of functional neurites and expression of excitatory and inhibitory ion channels. By testing with different neurotoxins, and micropillar substrate deflections with electrophysical recordings, it is found that acute magnetomechanical stimulation induces calcium influx in DRG neurons primarily via endogenous, mechanosensitive TRPV4 and PIEZO2 channels. Next, capitalizing on the receptor adaptation characteristic of DRG neurons, chronic magnetomechanical stimulation is performed and found that it reduces the expression of PIEZO2 channels, which can be useful for modulating pain where mechanosensitive channels are typically overexpressed. A general strategy is thus offered for neuroscientists and material scientists to fabricate 3D magnetic biomaterials tailored to different types of excitable cells for remote magnetomechanical modulation.  相似文献   
7.
8.
Chemical equilibria of propane aromatization under both unrestricted coke-formation and coke-free operating conditions were studied. In both cases, propane conversions were nearly complete. The aromatics selectivity was observed to be 46% at a temperature of 823 K (1 bar) under coke-free operating conditions. Application of hydrogen and steam as coke-removing agents was also studied. Under coke-free operation, the presence of low level of water in the feed favors propane methanation, whereas higher levels of water enhance propane steam reforming. Methane selectivity was found to attain a maximum at H2O/C3H8 molar ratio equal to 0.75 (823 K, 1 bar). The outcomes of the present study imply that the products selectivity has to be controlled kinetically and that the catalyst formulation should be aimed at minimization of coke formation and carbon-carbon bond breakage activity.  相似文献   
9.
A capacitive field-effect EDIS (electrolyte-diamond-insulator-semiconductor) sensor with improved pH and penicillin sensitivity has been realised using a nanocrystalline-diamond (NCD) film as sensitive gate material. The NCD growth process on SiO2 as well as an additional surface treatment in oxidising medium have been optimised to provide high pH-sensitive, non-porous O-terminated films without damage of the underlying SiO2 layer. The surface morphology of O-terminated NCD thin films and the layer structure of EDIS sensors have been studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. To establish the relative coverage of the surface functional groups generated by the oxidation of NCD surfaces, X-ray photoelectron spectroscopy analysis was carried out. The hydrophilicity of NCD thin films has been studied by water contact-angle measurements. A nearly Nernstian pH sensitivity of 54-57 mV/pH has been observed for O-terminated NCD films treated in an oxidising boiling mixture for 80 min and in oxygen plasma. The high pH-sensitive properties of O-terminated NCD have been used to develop an EDIS-based penicillin biosensor. A freshly prepared penicillin biosensor possesses a high sensitivity of 85 mV/decade in the concentration range of 0.1-2.5 mM penicillin G. The lower detection limit is 5 μM.  相似文献   
10.
In supply chain management (SCM), multi-product and multi-period models are usually used to select the suppliers. In the real world of SCM, however, there are normally several echelons which need to be integrated into inventory management. This paper presents a hybrid intelligent algorithm, based on the push SCM, which uses a fuzzy neural network and a genetic algorithm to forecast the rate of demand, determine the material planning and select the optimal supplier. We test the proposed algorithm in a case study conducted in Iran.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号