首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   6篇
综合类   1篇
化学工业   16篇
轻工业   7篇
石油天然气   3篇
无线电   8篇
一般工业技术   6篇
冶金工业   1篇
自动化技术   10篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   6篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2014年   3篇
  2013年   1篇
  2012年   5篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1995年   3篇
  1994年   4篇
  1975年   1篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
1.
The optimality criteria and numerical algorithms for DCOC are specialized in this part of the two-part paper to multispan structures each span of which is assumed to have a uniform section along its entire length. The steel ratio is allowed to vary freely along the length. Selfweight of the spans is also included in the equilibrium equation of the real system and in the optimality criteria.Section, equation, figure and table numbers continue from Part I.  相似文献   
2.
Dry (CO2) reforming of methane is conducted over two newly synthesized Ni20/Ce-γAl2O3 and Ni20/Ce-meso-Al2O3 catalysts. The x-ray diffraction (XRD) patterns indicated that Ni20/Ce-meso-Al2O3 exhibits a better dispersion of nickel, while Ni20/Ce-γAl2O3 has larger amounts of nickel crystallites. The temperature programmed desorption (TPD) kinetics analysis indicated that Ni20/Ce-meso-Al2O3 had a lesser metal-support interaction than the Ni20/Ce-γAl2O3. The thermal gravimetric analysis (TGA) indicated that the incorporation of ceria into the Al2O3 matrix helps to stabilize Ni20/Ce-meso-Al2O3 during dry reforming of methane. The temperature programmed reduction (TPR) indicated that the synthesized catalysts were sufficiently reducible below 750 °C. A fixed bed reactor evaluation (at 750 °C) showed that both catalysts can facilitate methane reforming to syngas with minimal coking throughout the 30 hours time-on-stream (TOS). However, Ni20/Ce-meso-Al2O3 is more promising in terms of prolonged stability for dry reforming applications. Moreover, the syngas yield for Ni20/Ce-γAl2O3 is close to equilibrium prediction during the first 1 hour of reaction time.  相似文献   
3.
The melting and crystallization behaviours of a polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) diblock copolymer and a PE homopolymer were investigated using multiple heating and cooling rate differential scanning calorimetry (DSC) experiments, and modelling of the crystallization kinetics and lamellar thickness distribution. This new model was first validated applying literature and experimental data. The model‐predicted morphology (n = 3.2) closely matched the spherulitic morphology (n = 3), which was determined using polarized optical microscopy. For each experimental cooling rate, the model predicted diblock copolymer crystallinity that well matched the entire DSC crystallinity curve, notably for an Avrami–Erofeev index of n = 2; and apparent crystallization activation energy that hardly varied with the cooling rates used, relative crystallinity (α), and crystallization temperature or time. This disfavours the concept of variable activation energy. The use of the right crystallization model and parameter estimation algorithm is important for addressing the mathematical artefact. Under non‐isothermal cooling, the PE‐b‐PMMA diblock copolymer, as per the model prediction, crystallized without confinement (n ≠ 1), preserving the cylindrical structure. From the characteristic shapes of the crystallization function f(α(T)) versus 1/T and crystallization rate versus α plots, the resulting Tcmax and narrow αmax range can guide the search for an appropriate crystallization model. The overall treatment illustrated in this study is not restricted to a PE homopolymer and a PE‐b‐isotactic PMMA block copolymer. It can be generally applied to crystalline homopolymers and copolymers (alternating, random and block), as well as their blends. The block copolymers and blends can be crystalline–amorphous as well as crystalline–crystalline. © 2014 Society of Chemical Industry  相似文献   
4.
5.
The paper solves the minimum-cost design problem of RC plane frames. The cost to be minimized includes those of concrete, reinforcing steel and formwork, whereas the design constraints include limits on maximum deflection at a specified node, on bending and shear strengths of beams and on combined axial and bending strength of columns, in accordance with the limit state design (LSD) requirements. The algorithms developed in this work can handle columns under uniaxial bending actions. In the companion paper the numerical procedure is generalized to include columns subjected to biaxial bending. On the basis of discretized continuum-type optimality criteria (DCOC), the design problem is systematically formulated, followed by explicit mathematical derivation of optimality criteria upon which iterative procedures are developed for the solution of design problems when the design variables are the cross-sectional parameters and steel ratios. For practical reasons, the cross-sectional parameters are chosen to be either uniform per member or uniform for several members at a given floor level. The procedure is illustrated on several test examples. It is shown that the DCOC-based methods are particularly efficient for the design of large RC frames.  相似文献   
6.
Multimedia Tools and Applications - The interest in real-time micro-expression recognition has increased with the current trend in human-computer interaction applications. Presently, there are...  相似文献   
7.
Quantitative structure-properties relationship (QSPR) method was used to design some novel antioxidant lubricant additives, while molecular dynamics simulations were used to calculate their dynamic binding energies on steel and to hydrogen-containing DLC (a-C: H) crystal surfaces. 29 synthesized antioxidant lubricant additives were collected from literature and geometrically optimized by Spartan’14 version 1.1.2 software while Genetic Function Algorithm (GFA) method of the material studio version 8.0 software was used to build the predictive QSPR model. Four novel antioxidant lubricant additives were successfully designed out of which E)-3-(4-((3-amino-4-methylphenyl)diazenyl)-5-hydroxy-4H-pyrazol-3-yl)-2-argio-6,7-difluoroquinazolin-4(3H)-one with excellent property of 3.531295 (KOH/g) was found to be better than the one reported by other researchers. The dynamic binding energy results revealed that one of the designed additives was excellently bound to steel (?1120.11 kcal/mol) and to hydrogen-containing DLC (a-C: H) crystals surface (7814.156 kcal/mol) surfaces than its co-additives. This investigation shows that the entire studied antioxidant lubricant additive was found to be better bound to the steel surface than hydrogen-containing DLC (a-C: H) crystals surface. This study will help in synthesizing novel anti-oxidant lubricant additives with better additive properties that will slow the tendency of oil to oxidize and will not possess a threat to the environment as the structures do not contain zinc and phosphorus that could limit the operation of the catalytic converter in the exhaust pipe.  相似文献   
8.
Yunusa Umar  Sk. Asrof Ali 《Polymer》2005,46(24):10709-10717
Sulfur dioxide, zwitterionic monomer, 3-(N,N-diallylammonio)propanesulfonate and a hydrophobic monomer N,N-diallyl-N-octadecylammonium chloride were cycloterpolymerized in dimethyl sulfoxide using azobisisobutyronitrile (AIBN) as the initiator to afford water-insoluble polysulfobetaines (PSB) in excellent yields. The PSBs were converted into the corresponding anionic polyelectrolyte (APE) by treatment with 1 equiv. of sodium hydroxide. Treating the pH-responsive PSB polymers with different equivalents of NaOH varied the zwitterionic and anionic charge densities in the polymer chain. The polymer chains with zwitterionic fraction greater than 0.5 were found to be insoluble in water. The solution properties of the APE and PSB/APE systems containing varying amount of the hydrophobic monomers in the range 0-10 mol% were investigated by viscometric techniques. It was found that PSB/APE polymer with a ratio of 33:67 for the zwitterionic and anionic fractions in the polymer chains, respectively, gave the highest viscosity value. The polymer concentration (C*HA) of around 1 g/dl was required for the manifestation of significant hydrophobic associations. The polymer solutions exhibited sharp increase in viscosity with increasing polymer concentrations in salt (NaCl)-free as well as salt-added solutions. The presence of sodium chloride is shown to enhance intermolecular associations in polymers having hydrophobes in the lower mol% range, whereas, intramolecular associations were manifested in polymers containing higher proportions of the hydrophobes.  相似文献   
9.
Corn starches with and without guar gum [10% (w/w)] and 2% (w/w) of diacetyl tartaric acid ester of monoglyceride, sodium stearoyl‐2‐lactylate or citric acid, respectively, were extrusion‐cooked in a twin‐screw extruder at 18% moisture, 150 °C and 180 rpm screw speed. The content of resistant starch was determined by sequential enzymatic digestion. The formation of resistant starch in extruded corn starch was strongly affected by the addition of gum and the different food additives. X‐ray diffraction of the extruded starches gave a V diffraction pattern indicating the effect of extrusion cooking and amylose‐lipid complexes. Enzymatic digestion did not affect the V‐structure, which could apparently be attributed to extrusion cooking. Similarly, differential scanning calorimetric thermograms indicated that all isolated resistant starches exhibited endothermic transitions between 71—178 °C signifying a complex formation between amylose and the emulsifiers and possibly the melting of amylose crystallites in the resistant starch. Purification of the isolated resistant starches by size exclusion‐high performance liquid chromatography showed a dependence of molecular weight on the added additives. Results of differential scanning calorimetry and X‐ray diffraction suggest that amylose‐lipid complexes could also be involved in the formation of resistant starch in extruded cornstarch.  相似文献   
10.
This study is aimed at demonstrating the application of vegetation spectral techniques for detection and monitoring of the impact of oil spills on vegetation. Vegetation spectral reflectance from Landsat 8 data were used in the calculation of five vegetation indices (normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), adjusted resistant vegetation index 2 (ARVI2), green-infrared index (G-NIR) and green-shortwave infrared (G-SWIR) from the spill sites (SS) and non-spill sites (NSS) in 2013 (pre-oil spill), 2014 (oil spill date) and 2015 (post-oil spill) for statistical comparison. The result shows that NDVI, SAVI, ARVI2, G-NIR and G-SWIR indicated a certain level of significant difference between vegetation condition at the SS and the NSS in December 2013. In December 2014 vegetation conditions indicated higher level of significant difference between the vegetation at the SS and NSS as follows where NDVI, SAVI and ARVI2 with p-value 0.005, G-NIR – p-value 0.01 and G-SWIR p-value 0.05. Similarly, in January 2015 a very significant difference with p-value <0.005. Three indices NDVI, ARVI2 and G-NIR indicated highly significant difference in vegetation conditions with p-value <0.005 between December 2013 and December 2014 at the same sites. Post-spill analysis shows that NDVI and ARVI2 indicated low level of significance difference p-value <0.05 suggesting subtle change in vegetation conditions between December 2014 and January 2015. This technique may help with the real time detection, response and monitoring of oil spills from pipelines for mitigation of pollution at the affected sites in mangrove forests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号