首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   17篇
  国内免费   1篇
电工技术   15篇
综合类   1篇
化学工业   156篇
金属工艺   9篇
机械仪表   6篇
建筑科学   19篇
矿业工程   1篇
能源动力   15篇
轻工业   94篇
水利工程   1篇
无线电   25篇
一般工业技术   110篇
冶金工业   51篇
原子能技术   7篇
自动化技术   22篇
  2023年   3篇
  2022年   6篇
  2021年   22篇
  2020年   5篇
  2019年   13篇
  2018年   6篇
  2017年   8篇
  2016年   11篇
  2015年   7篇
  2014年   18篇
  2013年   29篇
  2012年   35篇
  2011年   32篇
  2010年   33篇
  2009年   26篇
  2008年   24篇
  2007年   20篇
  2006年   23篇
  2005年   18篇
  2004年   18篇
  2003年   32篇
  2002年   14篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   23篇
  1997年   19篇
  1996年   12篇
  1995年   8篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   5篇
  1983年   4篇
  1982年   6篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1974年   1篇
排序方式: 共有532条查询结果,搜索用时 15 毫秒
1.
Carbohydrates, fats, and proteins are the underlying energy sources for animals and are catabolized through specific biochemical cascades involving numerous enzymes. The catabolites and metabolites in these metabolic pathways are crucial for many cellular functions; therefore, an imbalance and/or dysregulation of these pathways causes cellular dysfunction, resulting in various metabolic diseases. Bone, a highly mineralized organ that serves as a skeleton of the body, undergoes continuous active turnover, which is required for the maintenance of healthy bony components through the deposition and resorption of bone matrix and minerals. This highly coordinated event is regulated throughout life by bone cells such as osteoblasts, osteoclasts, and osteocytes, and requires synchronized activities from different metabolic pathways. Here, we aim to provide a comprehensive review of the cellular metabolism involved in bone development and homeostasis, as revealed by mouse genetic studies.  相似文献   
2.
Lanthanide-based oxysulfides and sulfide, LnTaO3.5S0.5, Ln10OS14 (Ln = La, Pr, Nd, Sm) and La4In5S13, were successively synthesized by sulfurization in a flowing H2S. The sulfurization decreased the band-gap energies from >4 eV to <3eV, because of the formation of occupied S3p orbitals on the top of valence band. In accordance with the small band gap, the H2 evolution from a 0.01 M Na2S and 0.01 M Na2SO3 solution system was observed under irradiation of light up to >500 nm. The rate of H2 evolution under light irradiation of >500 nm increased in the order of Ni/LaTaO3.5S0.5 < Ru/La10OS14 < Pt/La4In5S13.  相似文献   
3.
4.
In this paper, bulk-Si metal–oxide–semiconductor field effect transistors (MOSFETs) are fabricated using the catalytic chemical vapor deposition (Cat-CVD) method as an alternative technology to the conventional high-temperature thermal chemical vapor deposition. Particularly, formation of low-resistivity phosphorus (P)-doped poly-Si films is attempted by using Cat-CVD-deposited amorphous silicon (a-Si) films and successive rapid thermal annealing (RTA) of them. Even after RTA processes, neither peeling nor bubbling are observed, since hydrogen contents in Cat-CVD a-Si films can be as low as 1.1%. Both the crystallization and low resistivity of 0.004 Ω·cm are realized by RTA at 1000 °C for only 5 s. It is also revealed that Cat-CVD SiNx films prepared at 250 °C show excellent oxidation resistance, when the thickness of films is larger than approximately 10 nm for wet O2 oxidation at 1100 °C. It is found that the thickness required to stop oxygen penetration is equivalent to that for thermal CVD SiNx prepared at 750 °C. Finally, complementary MOSFETs (CMOSs) of single-crystalline Si were fabricated by using Cat-CVD poly-Si for gate electrodes and SiNx films for masks of local oxidation of silicon (LOCOS). At 3.3 V operation, less than 1.0 pA μm−1 of OFF leakage current and ON/OFF ratio of 107–108 are realized, i.e. the devices can operate similarly to conventional thermal CVD process.  相似文献   
5.
6.
We identified the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC) tissues by RNA sequencing, in which 168 miRNAs were significantly upregulated, including both strands of the miR-31 duplex (miR-31-5p and miR-31-3p). The aims of this study were to identify networks of tumor suppressor genes regulated by miR-31-5p and miR-31-3p in HNSCC cells. Our functional assays showed that inhibition of miR-31-5p and miR-31-3p attenuated cancer cell malignant phenotypes (cell proliferation, migration, and invasion), suggesting that they had oncogenic potential in HNSCC cells. Our in silico analysis revealed 146 genes regulated by miR-31 in HNSCC cells. Among these targets, the low expression of seven genes (miR-31-5p targets: CACNB2 and IL34; miR-31-3p targets: CGNL1, CNTN3, GAS7, HOPX, and PBX1) was closely associated with poor prognosis in HNSCC. According to multivariate Cox regression analyses, the expression levels of five of those genes (CACNB2: p = 0.0189; IL34: p = 0.0425; CGNL1: p = 0.0014; CNTN3: p = 0.0304; and GAS7: p = 0.0412) were independent prognostic factors in patients with HNSCC. Our miRNA signature and miRNA-based approach will provide new insights into the molecular pathogenesis of HNSCC.  相似文献   
7.
Hydrogenation of four bituminous coals impregnated with 5 wt% of either mixtures of ZnCl2-MCln (CuCl, CrCl3 and MoCl5) systems or ZnCl2 was carried out using a batch autoclave system at 400° for 3 h at 9.8 MPa of initial hydrogen pressure. The ZnCl2-MoCl5 system showed the highest yield of the hexane-soluble (HS) fraction compared with the other systems irrespective of the coal used. The difference between the yields of HS fractions using the ZnCl2-MoCl5 and other systems was most marked for coals of fairly low volatile matter content, though the conversion was relatively low (47–66%), whilst for coals of high volatile matter content HS yields with the binary melt systems were high (86–91% conversion). Elemental analyses of the HS fractions indicated that the ZnCl2-MoCl5 system is most favourable in decreasing the average molecular weight and the heteroatom content of HS, this characteristic trend being confirmed also with five HS fractions separated by Chromatographic techniques. Both elemental analyses and molecular weights of asphaltene (benzene-soluble materials, BS) indicated that the ZnCl2-MoCl5 system is also most effective in cracking coal structure.  相似文献   
8.
Summary In order to obtain materials with nanopores which will be applicable for many fields, the structures of the cured blends of phenolic resin (PhN), poly(methyl methacrylate) (PMMA) and curing agent were studied. After PMMA was extracted from cured blends, the structures of cured phenolic resins were observed with SEM. As a results, it was found that nanosized continuous pore structures were formed in extremely wide composition region if curing temperature was high.  相似文献   
9.
ABSTRACT

Preparation of poly(thiophene-alt-pyrrole bearing mesogen) was carried out with Migita–Kosugi–Stille coupling type polycondensation with an aid of Pd(0) complex catalyst. The resultant polymer shows lyotropic liquid crystallinity with good film-forming property. The smectic fan-shaped texture is maintained after completion of evaporation of solvent from the polymer solution. The cast film having liquid crystal (LC) order shows light emission function upon irradiation of excitation light at 460 nm. The polymer shows LC domain emission. Mechanical orientation allows to yield LC domain aligned film with band structure. Chiral mesogenic side chain induces π-conjugated main chain helicity from distance in molecular level.  相似文献   
10.
A new kind of the Vernier mechanism that is able to control the size of linear assembly of DNA origami nanostructures is proposed. The mechanism is realized by mechanical design of DNA origami, which consists of a hollow cylinder and a rotatable shaft in it connected through the same scaffold. This nanostructure stacks with each other by the shape complementarity at its top and bottom surfaces of the cylinder, while the number of stacking is limited by twisting angle of the shaft. Experiments have shown that the size distribution of multimeric assembly of the origami depends on the twisting angle of the shaft; the average lengths of the multimer are decamer, hexamer, and tetramer for 0°, 10°, and 20° twist, respectively. In summary, it is possible to affect the number of polymerization by adjusting the precise shape and movability of a molecular structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号