首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
电工技术   3篇
化学工业   6篇
能源动力   9篇
轻工业   1篇
石油天然气   1篇
一般工业技术   2篇
自动化技术   1篇
  2021年   5篇
  2020年   1篇
  2017年   1篇
  2014年   1篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  1994年   1篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
1.
ABSTRACT: BACKGROUND: Coffee and tea consumption was hypothesized to interact with variants of vitamin D-receptor polymorphisms, but limited evidence exists. Here we determine for the first time whether increased coffee and tea consumption affects circulating levels of 25-hydroxyvitamin D in a cohort of Saudi adolescents. METHODS: A total of 330 randomly selected Saudi adolescents were included. Anthropometrics were recorded and fasting blood samples were analyzed for routine analysis of fasting glucose, lipid levels, calcium, albumin and phosphorous. Frequency of coffee and tea intake was noted. 25-hydroxyvitamin D levels were measured using enzyme-linked immunosorbent assays. RESULTS: Improved lipid profiles were observed in both boys and girls, as demonstrated by increased levels of HDL-cholesterol, even after controlling for age and BMI, among those consuming 9--12 cups of coffee/week. Vitamin D levels were significantly highest among those consuming 9--12 cups of tea/week in all subjects (p-value 0.009) independent of age, gender, BMI, physical activity and sun exposure. CONCLUSION: This study suggests a link between tea consumption and vitamin D levels in a cohort of Saudi adolescents, independent of age, BMI, gender, physical activity and sun exposure. These findings should be confirmed prospectively.  相似文献   
2.
介孔载体嫁接的离子液体催化二氧化碳合成碳酸丙烯酯   总被引:1,自引:0,他引:1  
将离子液体1-丙基(三乙氧基硅基)-3-甲基咪唑的氢氧化物([Smim]OH)分别嫁接到介孔SiO_2、MCM-41和SBA-15分子筛上制备了非均相嫁接型离子液体,用傅里叶变换红外光谱、N_2吸附、元素分析和热重分析等技术对3种非均相嫁接型离子液体进行了表征。在无溶剂、温和的条件下,以非均相嫁接型离子液体为催化剂,研究了环氧丙烷(PO)与CO_2环加成合成碳酸丙烯酯的反应。实验结果表明,3种非均相嫁接型离子液体均具有较好的催化性能,[Smim]OH/SiO_2的催化性能最好;在[Smim]OH/SiO_2 1.260 mmol、PO 70 mmol、CO_22 MPa、120℃、8 h的优化反应条件下,PO的转化率可达99.5%;[Smim]OH/SiO_2重复使用4次后仍能保持较高的催化性能。  相似文献   
3.
This study presents a new approach based on a hybrid algorithm consisting of Genetic Algorithm (GA), Pattern Search (PS) and Sequential Quadratic Programming (SQP) techniques to solve the well-known power system Economic dispatch problem (ED). GA is the main optimizer of the algorithm, whereas PS and SQP are used to fine tune the results of GA to increase confidence in the solution. For illustrative purposes, the algorithm has been applied to various test systems to assess its effectiveness. Furthermore, convergence characteristics and robustness of the proposed method have been explored through comparison with results reported in literature. The outcome is very encouraging and suggests that the hybrid GA–PS–SQP algorithm is very efficient in solving power system economic dispatch problem.  相似文献   
4.
The effect of Phosphotungstic acid (PWA) on the proton conductivity and morphology of zirconium phosphate (ZrP), porous polytetrafluoethylene (PTFE), glycerol (GLY) composite membrane was investigated in this work. The composite membranes were synthesized using two approaches: (1) Phosphotungstic acid (PWA) added to phosphoric acid and, (2) PWA + silicic acid were added to phosphoric acid. ZrP was formed inside the pores of PTFE via the in situ precipitation. The membranes were evaluated for their morphology and proton conductivity. The proton conductivity of PWA–ZrP/PTFE/GLY membrane was 0.003 S cm?1. When PWA was combined with silicic acid, the proton conductivity increased from 0.003 to 0.059 S cm?1 (became about 60% of Nafion’s). This conductivity is higher than the proton conductivity of Nafion–silica–PWA membranes reported in the literature. The SEM results showed a porous structure for the modified membranes. The porous structure combined with this reasonable proton conductivity would make these membranes suitable as the electrolyte component in the catalyst layer for direct hydrocarbon fuel cell applications.  相似文献   
5.
Composite membranes composed of zirconium phosphate (ZrP) and imidazolium-based ionic liquids (IL), supported on polytetrafluoroethylene (PTFE) were prepared and evaluated for their application in proton exchange membrane fuel cells (PEM) operating at 200 °C. The experimental results reported here demonstrate that the synthesized membrane has a high proton conductivity of 0.07 S cm?1, i.e, 70% of that reported for Nafion. Furthermore, the composite membranes possess a very high proton conductivity of 0.06 S cm?1 when processed at 200 °C under completely anhydrous conditions. Scanning electron microscopy (SEM) images indicate the formation of very small particles, with diameters in the range of 100–300 nm, within the confined pores of PTFE. Thermogravimetric analysis (TGA) reveals a maximum of 20% weight loss up to 500 °C for the synthesized membrane. The increase in proton conductivity is attributed to the creation of multiple proton conducting paths within the membrane matrix. The IL component is acting as a proton bridge. Therefore, these membranes have potential for use in PEM fuel cells operating at temperatures around 200 °C.  相似文献   
6.
The aim of this research is to develop a faster watermarking algorithm based on the frequency domain. A sequential algorithm is picked, implemented, and parallelism is exploited in order to achieve a shorter execution time. Both DWT (discrete wavelet transform) and DCT (discrete cosine transform) are applied. Frequency domain watermarking techniques are known to be more robust. In addition, the algorithm falls under the bling category which implies a higher degree of security. A quad-core Intel Core TM i7-3630QM processor is used. The CPU (central processing unit) is 2.4 GHz and 6 GB RAM. MATLAB R2012a is used under Microsoft Windows 7 operating system. Two main lines of experiments are conducted; namely, the association of hosts to watermarks and the measurement of program speedup. Speedup is measured for both embedding and extraction operations on both dual-core and quad-core. Results reveal a gained speedup that reaches more than 200% as compared to the sequential algorithm.  相似文献   
7.
An efficient and convenient strategy for the enantioselective synthesis of enantiomerically enriched 10-ethyl-7,8-dihydro-γ-ionone isomers (R)-(+)-7, and (S)-(-)-7 are described utilizing a lipase mediated resolution protocol, and reductive elimination of the secondary allylic alcohol as the key step. The enantioselective and diastereoselective lipase kinetic acetylation of 4-hydroxy-γ-ionone derivatives 6a afforded the 4-acetyl-γ-ionone derivatives (-)-8, and the 4-hydrox-γ-ionone derivatives (+)-6a, which are suitable precursors of the desired products. Stereospecific palladium-mediated elimination of allylic acetate provides the target compounds with an excellent enantiomeric excess and yield. Additionally, the novel 4,5-didehydro-α-ionone 13 is obtained from readily prepared (2,6,6-trimethylcyclohexa-2,4-dien-1-yl) methanol 9. The structures of all newly synthesized compounds have been elucidated by (1)H, (13)C NMR, GC-MS, and IR spectrometry. These compounds represent a new class of odorants that may be of pivotal relevance in industrial perfumery.  相似文献   
8.
Zirconium phosphate (ZrP) was investigated as a possible proton conductor material in direct hydrocarbon polymer electrolyte membrane (PEM) fuel cells that operate at greater temperatures than conventional PEM fuel cells. Amorphous zirconium phosphate was synthesized in this work by precipitation at room temperature via reaction of ZrOCl2 with H3PO4 aqueous solutions. The conductivity of the synthesized ZrP materials were 7.04 × 10−5 S cm−1 for ZrP oven dried in laboratory air at 70 °C and 3.57 × 10−4 S cm−1 for ZrP powder dried first at 70 °C in laboratory air and then processed at 200 °C with continuous H2O injection at an H2O/N2 molar ratio of 6. This work showed that by maintaining appropriate water content in the vapour phase at processing conditions, it was possible to alter the composition of zirconium phosphate to a sufficiently hydrated state, and thereby avoid the normal decrease in conductivity with increasing temperature.  相似文献   
9.
A novel bioprocess design to convert paper mill sludge (PMS) to biofuels is proposed in this work. The design utilizes cellulosic fiber recovered from the PMS via optimized de-ashing (HCl washing) step. This work specifically provided a technical and economic analysis of paper mill sludge conversion into biofuel production using a novel protocol. The protocol is based on scanning electron microscopy (SEM) analysis to assess the quality of the contained cellulose prior to further processing. The results are crucially important to determine the suitability of the PMS feedstock to produce biofuels. SEM analysis was employed as a preliminary screening tool to evaluate sludge digestibility and conversion. The SEM characterization technique established a direct relationship between the fiber morphology, presence of crystals salts and sugar yield after enzymatic hydrolysis. Substantial structural changes were observed before and after de-ashing the sludge samples, leading to a correlation between the surface morphology and the washing step. The results suggested that de-ashing changes the surface morphology and upon analysis, increased the sugar yield up to about 86% as opposed to 2.2% in sludge sample A as an example. The PMS conversion into biofuel was simulated using Aspen PLUS and compared to a similar process using corn stover as feedstock. The simulation results showed it is 20% cheaper to produce bioethanol from PMS compared to corn stover. The simulation revealed less energy demand by around 13 320 MJ/h compared to that when corn stover was used.  相似文献   
10.
Paper and pulp mills generate substantial quantities of cellulose-rich sludge materials that are disposed in landfills at a large scale. For sustainability purposes, sludge materials can be bioprocessed to produce renewable fuels and useful chemicals. The enzymatic hydrolysis of cellulose is the process bottleneck that affects the conversion economics directly by using zero-cost raw materials. In order to study and optimize the process, the characteristics of the sludge raw materials should be first evaluated. In this work, sludge samples were obtained from paper mills located at different locations in Wisconsin and Minnesota. Part of the sludge samples was washed (de-ashed) with hydrochloric acid while the other part remained unwashed. The samples were subjected to multiple spectroscopic analyses techniques to evaluate the morphological properties of cellulose fibers and to estimate the total structural carbohydrate content. The results showed that the de-ashing process changed some fiber characteristics and cellulose crystallinity structure in all sludge samples. Sludge sample A (obtained from Kraft pulp and recycled paper mill region) showed a high percentage of fiber, with crystalline cellulose, compared to the other two sludge samples suggesting that sludge A is a valuable source to make value-added products. Aspen Plus mass and energy calculations performed in view of the ‘zero’ cost and the reliable supply of sludge raw materials producing 2 mol H2/mol glucose. Moreover, the results showed that extracting crystalline cellulose from these sludge samples is more profitable than crystalline cellulose made from the other lignocellulosic feedstocks. The results reported here showed that the utilization of these sludge materials would be an economically attractive and promising alternative for the production of hydrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号