首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
无线电   6篇
一般工业技术   1篇
自动化技术   1篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2010年   2篇
  2009年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
In this paper, we propose an efficient frequency domain equalization scheme for Multiple Input Multiple Output (MIMO) Single-Carrier Frequency-Division Multiple Access (SC-FDMA) systems. The proposed scheme avoids the complexity problem associated with the conventional MIMO Zero-Forcing (ZF) equalizer as well as the noise enhancement problem. The matrix inversion process associated with the proposed equalization scheme is performed in two steps to reduce complexity. A regularization term is added in the second step of the matrix inversion to avoid the noise enhancement. Simulation experiments on uplink MIMO SC-FDMA systems show that the proposed equalization scheme provides better performance than that of the ZF equalizer and its complexity is far less than that of the ZF equalizer.  相似文献   
2.
A signal transmitted through a wireless channel may be severely distorted by intersymbol interference (ISI) and multiple access interference (MAI). In this paper, we propose an efficient CDMA receiver based on frequency domain equalization (FDE) with a regularized zero forcing (RZF) equalizer and parallel interference cancellation with a unit clipper decision function (CPIC) to combat both the ISI and the MAI. We call this receiver the FDE-RZF-CPIC receiver. This receiver is suitable for downlink zero padding CDMA cellular systems. The effects of the decision function, the channel estimation, the number of cancelled users, and the user loading on the performance of the proposed receiver are discussed in the paper. The bit error rate (BER) of the data received by the proposed receiver is evaluated by computer simulations. The experimental results show that the proposed receiver provides a good performance, even with a large number of interfering users. At a BER of 10?3, the performance gain of the proposed receiver is about 2 dB over the RAKE receiver with a clipper decision function and PIC in the half-loaded case (eight users) and is much larger in the full-loaded case (16 users).  相似文献   
3.
Direct-sequence code division multiple access (DS/CDMA) systems transmitting over multipath channels suffer from intersymbol interference (ISI) and multiple access interference (MAI). Recently, DS/CDMA with frequency domain equalization (FDE) has attracted much attention for its ability to obtain an excellent performance even in strong frequency selective fading channels. However, the presence of residual interference after the FDE degrades the orthogonality among the spreading codes and hence the BER performance deteriorates. Parallel interference cancellation (PIC) is an effective method to suppress the MAI and improve the CDMA system capacity. In this paper, we propose three interference cancellation architectures for downlink cyclic prefix CDMA systems. The common thread between these three architectures is their implementation in frequency domain. A comparison between such architectures is presented. Simulation results show that the combination of PIC and FDE provides an efficient solution to suppress the MAI in downlink CDMA systems over frequency selective fading channels.  相似文献   
4.
Recently, the Single-Carrier Frequency Division Multiple Access (SC-FDMA) system has attracted the attention as an efficient alternative to the Orthogonal Division Multiple Access (OFDMA) system in the uplink communications. In this system, the Carrier Frequency Offsets (CFOs) disrupt the orthogonality between subcarriers, and give rise to Inter-Carrier Interference (ICI), and Multiple Access Interference (MAI) among users. In this paper, the impact of the CFOs on the performance of the Discrete Fourier Transform SC-FDMA (DFT-SC-FDMA) and the Discrete Cosine Transform SC-FDMA (DCT-SC-FDMA) systems is investigated. Based on the Minimum Mean Square Error (MMSE) criterion, a new low-complexity joint equalization and CFOs compensation scheme is proposed. It is refered to as the MMSE scheme. The MMSE weights of the proposed scheme are derived taking into account the MAI and the noise. Furthermore, a hybrid scheme comprising the proposed MMSE scheme and a Parallel Interference Cancellation (PIC) stage is also suggested and investigated to further enhance the performance of interleaved subcarriers mapping systems. From the obtained simulation results, it is clear that CFOs disrupt the orthogonality between the subcarriers in SC-FDMA systems and degrade the Bit Error Rate (BER) performance. The proposed compensation schemes are able to enhance the system performance, even in the presence of the estimation errors.  相似文献   
5.
Single-carrier frequency division multiple access (SC-FDMA) has been adopted as a possible air interface for future wireless networks. It combines most of the advantages of orthogonal frequency division multiple access (OFDMA) and the low peak-to-average-power ratio (PAPR) of single-carrier transmission. This study proposes a new transceiver scheme for SC-FDMA systems implementing the wavelet transform to decompose the transmitted signal into approximation and detail components. The approximation component can be clipped or companded whereas the detail component is left unchanged because of its sensitivity to noise. Wavelet filter banks at the transmitter and the receiver demonstrate the ability to reduce the distortion in the reconstructed signal while retaining all the significant features present in the signal. The performance of the proposed scheme is investigated with different PAPR reduction methods. Simulation results show that the proposed scheme with the hybrid clipping and companding method provides a significant performance enhancement when compared with the conventional SC-FDMA system, while the complexity of the system is slightly increased.  相似文献   
6.
In this paper, a companding technique is proposed to effectively reduce the peak-to-average power ratio (PAPR) in single-carrier frequency division multiple access (SC-FDMA) systems. By companding the samples with large amplitudes, while enhancing those with small amplitudes, a significant reduction in the PAPR can be achieved. The performance of the proposed SC-FDMA with companding system is studied and compared with that of the standard SC-FDMA system. Simulation results show that the SC-FDMA with companding system has a lower PAPR when compared with the conventional SC-FDMA system, while the complexity of the system slightly increases. Results also reveal that the companding coefficient must be chosen carefully in order to limit the PAPR without introducing degradations into the bit error rate performance.  相似文献   
7.
The capacity of a multicarrier code-division multiple access (MC-CDMA) system is limited by a multiple access interference (MAI) from other users. In this paper, we propose a MAI cancellation scheme to transmit images over a recent discrete sine transform (DST) based MC-CDMA (DST-MC-CDMA) system. In the proposed scheme the minimum mean square error (MMSE) equalizer is used to provide the initial estimate of users’ data and the parallel interference cancellation (PIC) scheme is then used to regenerate and cancel the MAI from the desired user. The proposed scheme is called MMSE-PIC. Simulation results in multi-path fading channel confirm the excellent performance of the proposed scheme as compared to MMSE equalization method. It is also found that the best suitable tentative decision for the proposed scheme is the null zone decision or the clipper decision. We also conduct experiments to show the performance of the proposed scheme with a real image transmission over the DST-MC-CDMA system. Results show that the proposed scheme provides significant image quality improvement as compared to the existing schemes. The average peak signal to noise ratio improvement achieved by the proposed scheme over the conventional MMSE equalizer at a SNR = 30 dB is about 6.5 dB for different number of users.  相似文献   
8.
Single-carrier frequency division multiple access (SC-FDMA) is a promising alternative to orthogonal frequency division multiple access (OFDMA) for uplink wireless communications in frequency-selective fading environments. In this paper, we investigate the impact of the power amplifier (PA) on the performance of the SC-FDMA system. The suitable saturation level thresholds of the PA that can be utilized in the SC-FDMA system are studied and determined through simulations for different modulation formats. Simulation results show that the saturation level of the PA has a significant effect on the bit error rate (BER) performance of the SC-FDMA system, especially with high order modulation formats.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号