首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
建筑科学   5篇
能源动力   1篇
无线电   1篇
一般工业技术   4篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2007年   2篇
  1991年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The long-term failure of the total hip and knee prostheses is attributed to the production of wear particles at the articulating interface between the metals, ceramics and polymers used for surgical implants and bone-fixtures. Therefore, finding an adhesive and inert coating material that has low frictional coefficient should dramatically reduce the production of wear particles and hence, prolong the life time of the surgical implants. The novel properties of the non-toxic diamond-like carbon (DLC) coatings have proven to be excellent candidates for biomedical applications. However, they have poor adhesion strength to the alloys and biomaterials. The addition of a thin interfacial layer such as Si, Ti, TiN, Mo and Cu/Cr and/or adding additives such as Si, F, N, O, W, V, Co, Mo, Ti or their combinations to the DLC films has been found to increase the adhesion strength substantially. In our study, grade 316L stainless steel and grade 5 titanium alloy (Ti-6Al-4V) were used as biomaterial substrates. They were coated with DLC films containing boron additives at various levels using various Si interfacial layer thicknesses. The best film adhesion was achieved at 8% and 20% on DLC coated Ti-6Al-4V and grade 316L substrates, respectively. It has been demonstrated that doping the DLC with boron increases their adhesion strength to both substrates even without silicon interfacial layer and increases it substantially with optimum silicon layer thickness. The adhesion strength is also correlated with the hydrogen contents in the B-DLC films. It is found to reach its maximum value of 700 kg/cm2 and 390 kg/cm2 at 2/7 and 3/6 for CH4/Ar partial pressures (in mTorr ratio) for Ti-6Al-4V and 316L substrates, respectively.  相似文献   
2.

PMMA polymer doped by multi-walled carbon nanotubes (MWCNTs) has attracted much attention as promising materials for photovoltaic and optoelectronic applications. The undoped poly(methyl methacrylate) (PMMA) and PMMA/MWCNTs nanocomposite films doped with varying concentrations of Zirconium dioxide nanoparticles (ZrO2 NPs) are synthesized using the casting method. It is found that the transmittance (\(T\%\)) decreases significantly as wt%?=?5% of MWCNTs is injected into PMMA matrix. In addition, increasing the concentration of ZrO2 NPs into PMMA- MWCNTs nanocomposite thin films results in a further reduction of the transmittance and a further increase of the reflectance (\(R\%\)). The optical band gap energy (Eg) of PMMA-MWCNTs/ZrO2 NPs decreases from 4.063 \(eV\) to 3.845 \(eV\) upon injection of 5% of MWCNTs and gradually increasing the ZrO2 concentration in PMMA matrix. Furthermore, other essential optical parameters are estimated using different classical models such as Drude, Spitzer-Fan, Sellmeier, and Wemple–DiDomenico (WDD). Interestingly, thermal stability of PMMA-MWCNTs nanocomposite films is enhanced dramatically upon increasing the content of ZrO2 NPs. The synthesized nanocomposite thin films could be potential candidates for fabrication realistic scaled optoelectronic devices.

  相似文献   
3.
Local-density approximation calculations (LDA) within density functional theory (DFT) and Berry phase approach within modern theory of polarization are performed to predict the structural and piezoelectric properties of ordered Sc0·5Ga0·5N alloys under compressive and tensile in-plane strain. This alloy is found to exhibit a tremendous piezoelectric response, associated with a phase transition from nonpolar p63/mcc(D 6h) space group to a polar p63 mc(C 6v) structure, at fixed Ga and Sc compositions when continuously changing the experimental accessible parameters (i.e. the compressive and tensile strain). The mechanism of the effects behind such anomalous behaviour is revealed and explained.  相似文献   
4.
The potential of electricity load management within the industrial sector in Jordan is assessed and quantified. Different load management options that would result in reducing the maximum demand on electricity by the industrial sector were considered. The potential for reducing the peak load of the Jordan electrical power system by load management within the industrial sector (medium industrial plants) is estimated to be 22.2 MW.  相似文献   
5.
The performance of ductless personalized ventilation (DPV) was compared to the performance of a typical desk fan since they are both stand-alone systems that allow the users to personalize their indoor environment. The two systems were evaluated using a validated computational fluid dynamics (CFD) model of an office room occupied by two users. To investigate the impact of DPV and the fan on the inhaled air quality, two types of contamination sources were modeled in the domain: an active source and a passive source. Additionally, the influence of the compared systems on thermal comfort was assessed using the coupling of CFD with the comfort model developed by the University of California, Berkeley (UCB model). Results indicated that DPV performed generally better than the desk fan. It provided better thermal comfort and showed a superior performance in removing the exhaled contaminants. However, the desk fan performed better in removing the contaminants emitted from a passive source near the floor level. This indicates that the performance of DPV and desk fans depends highly on the location of the contamination source. Moreover, the simulations showed that both systems increased the spread of exhaled contamination when used by the source occupant.  相似文献   
6.
Journal of Materials Science: Materials in Electronics - Complex composite films of potassium bis(2-methyllactato) borate hemihydrate (KMB) doped with iodine (I2) were dip-synthesized on glass...  相似文献   
7.
The spread of breathing air when playing wind instruments and singing was investigated and visualized using two methods: (1) schlieren imaging with a schlieren mirror and (2) background-oriented schlieren (BOS). These methods visualize airflow by visualizing density gradients in transparent media. The playing of professional woodwind and brass instrument players, as well as professional classical trained singers were investigated to estimate the spread distances of the breathing air. For a better comparison and consistent measurement series, a single high note, a single low note, and an extract of a musical piece were investigated. Additionally, anemometry was used to determine the velocity of the spreading breathing air and the extent to which it was quantifiable. The results showed that the ejected airflow from the examined instruments and singers did not exceed a spreading range of 1.2 m into the room. However, differences in the various instruments have to be considered to assess properly the spread of the breathing air. The findings discussed below help to estimate the risk of cross-infection for wind instrument players and singers and to develop efficacious safety precautions, which is essential during critical health periods such as the current COVID-19 pandemic.  相似文献   
8.
C. Voelker  H. Alsaad 《Indoor air》2018,28(3):415-425
This study aims to develop an approach to couple a computational fluid dynamics (CFD) solver to the University of California, Berkeley (UCB) thermal comfort model to accurately evaluate thermal comfort. The coupling was made using an iterative JavaScript to automatically transfer data for each individual segment of the human body back and forth between the CFD solver and the UCB model until reaching convergence defined by a stopping criterion. The location from which data are transferred to the UCB model was determined using a new approach based on the temperature difference between subsequent points on the temperature profile curve in the vicinity of the body surface. This approach was used because the microclimate surrounding the human body differs in thickness depending on the body segment and the surrounding environment. To accurately simulate the thermal environment, the numerical model was validated beforehand using experimental data collected in a climate chamber equipped with a thermal manikin. Furthermore, an example of the practical implementations of this coupling is reported in this paper through radiant floor cooling simulation cases, in which overall and local thermal sensation and comfort were investigated using the coupled UCB model.  相似文献   
9.
The aim of this study is twofold: to validate a computational fluid dynamics (CFD) model, and then to use the validated model to evaluate the performance of a ductless personalized ventilation (DPV) system. To validate the numerical model, a series of measurements was conducted in a climate chamber equipped with a thermal manikin. Various turbulence models, settings, and options were tested; simulation results were compared to the measured data to determine the turbulence model and solver settings that achieve the best agreement between the measured and simulated values. Subsequently, the validated CFD model was then used to evaluate the thermal environment and indoor air quality in a room equipped with a DPV system combined with displacement ventilation. Results from the numerical model were then used to quantify thermal sensation and comfort using the UC Berkeley thermal comfort model.  相似文献   
10.
This study investigates the performance of two systems: personalized ventilation (PV) and ductless personalized ventilation (DPV). Even though the literature indicates a compelling performance of PV, it is not often used in practice due to its impracticality. Therefore, the present study assesses the possibility of replacing the inflexible PV with DPV in office rooms equipped with displacement ventilation (DV) in the summer season. Numerical simulations were utilized to evaluate the inhaled concentration of pollutants when PV and DPV are used. The systems were compared in a simulated office with two occupants: a susceptible occupant and a source occupant. Three types of pollution were simulated: exhaled infectious air, dermally emitted contamination, and room contamination from a passive source. Results indicated that PV improved the inhaled air quality regardless of the location of the pollution source; a higher PV supply flow rate positively impacted the inhaled air quality. Contrarily, the performance of DPV was highly sensitive to the source location and the personalized flow rate. A higher DPV flow rate tends to decrease the inhaled air quality due to increased mixing of pollutants in the room. Moreover, both systems achieved better results when the personalized system of the source occupant was switched off.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号