首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   10篇
  国内免费   1篇
电工技术   1篇
化学工业   71篇
金属工艺   19篇
机械仪表   16篇
建筑科学   10篇
能源动力   15篇
轻工业   5篇
无线电   19篇
一般工业技术   91篇
冶金工业   22篇
原子能技术   3篇
自动化技术   57篇
  2022年   5篇
  2021年   6篇
  2020年   6篇
  2019年   8篇
  2018年   8篇
  2017年   12篇
  2016年   12篇
  2015年   17篇
  2014年   3篇
  2013年   24篇
  2012年   9篇
  2011年   31篇
  2010年   8篇
  2009年   15篇
  2008年   17篇
  2007年   10篇
  2006年   8篇
  2005年   13篇
  2004年   12篇
  2003年   9篇
  2002年   8篇
  2001年   10篇
  2000年   4篇
  1999年   3篇
  1998年   7篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
排序方式: 共有329条查询结果,搜索用时 15 毫秒
1.
Synthesis of nanocrystalline pristine and Mn-doped calcium copper titanate quadruple perovskites, CaCu3?xMnxTi4?xMnxO12 (x = 0, 0.5, and 1.0) by modified citrate solution combustion method has been reported. Powder X-ray diffraction patterns attest the phase purity of the perovskite materials. Average particle sizes of all the materials obtained from the Scherrer's formula are in the range of 55–70 nm. The specific surface areas for all the perovskites obtained from BET isotherms are found to be low as expected for the condensed oxide systems and fall in the range of 13–17 m2 g?1. Transmission electron microscopy studies show a reduction in particle size of CaCu3Ti4O12 with increase in Mn doping. Ca and Ti are present in +2 and +4 oxidation states in all the materials as demonstrated by X-ray photoelectron spectroscopy analyses. Cu2+ gets reduced in CaCu3Ti4O12 with higher Mn content. Mn is observed to be present only in +3 oxidation state. All the materials have been examined to be active in CO oxidation as well as H2 production from methanol steam reforming. CaCu3Ti4O12 with ~14 at.% Mn is found to show best catalytic activities among these materials. A comprehensive analysis of the catalytic activities of these perovskites toward CO oxidation and H2 production from MSR reveal the cooperative activity of copper-manganese in the doped perovskites and it is more effective at lower manganese content.  相似文献   
2.
Separation membranes with higher molecular weight cut-offs are needed to separate ions and small molecules from a mixed feed. The molecular sieving phenomenon can be utilized to separate smaller species with well-defined dimensions from a mixture. Here, the formation of freestanding polyimine nanofilms with thicknesses down to ≈14 nm synthesized via self-assembly of pre-synthesized imine oligomers is reported. Nanofilms are fabricated at the water–xylene interface followed by reversible condensation of polymerization according to the Pieranski theory. Polyimine nanofilm composite membranes are made via transferring the freestanding nanofilm onto ultrafiltration supports. High water permeance of 49.5 L m-2 h−1 bar−1 is achieved with a complete rejection of brilliant blue-R (BBR; molecular weight = 825 g mol−1) and no more than 10% rejection of monovalent and divalent salts. However, for a mixed feed of BBR dye and monovalent salt, the salt rejection is increased to ≈18%. Membranes are also capable of separating small dyes (e.g., methyl orange; MO; molecular weight = 327 g mol−1) from a mixed feed of BBR and MO. Considering a thickness of ≈14 nm and its separation efficiency, the present membrane has significance in separation processes.  相似文献   
3.
4.
When a circuit is tested using random or pseudorandom patterns, it is essential to determine the amount of time (test length) required to test it adequately. We present a methodology for predicting different statistics of random pattern test length. While earlier methods allowed estimation only of upper bounds of test length and only for exhaustive fault coverage, the technique presented here is capable of providing estimates of all statistics of interest (including expected value and variance) for all coverage specifications.Our methodology is based on sampling models developed for fault coverage estimation [1]. Test length is viewed as awaiting time on fault coverage. Based on this relation we derive the distribution of test length as a function of fault coverage. Methods of approximating expected value and variance of test length are presented. Accuracy of these approximations can be controlled by the user. A practical technique for predicting expected test length is developed. This technique is based on clustering faults into equal detectability subsets. A simple and effective algorithm for fault clustering is also presented. The sampling model is applied to each cluster independently and the results are then aggregated to yield test lengths for the whole circuit. Results of experiments with several circuits (both ISCAS '85 benchmarks and other practical circuits) are also provided.This work was done while the author was with the Department of Electrical Engineering, Southern Illinois University, Carbondale, IL 62901.  相似文献   
5.
A new equationE =E 0 (1 –bp) n has been derived semi-empirically to describe the porosity dependence of elastic properties of thermosetting polymers. The material constantb is defined as a pore distribution geometry factor and the other material constantn is dependent on pore geometry. The equation shows good agreement with the data on porous polyester and epoxy resins.  相似文献   
6.
Partial substitution of Mn in lithium manganese oxide spinel materials by Cu and Ni greatly affects the electrochemistry and the cycle life characteristics of the cathode. Substitution with either metal or a combination of both metals in the spinel lattice structure reduces the 3.9-4.2 V potential plateaus associated with the conversion of Mn3+ to Mn4+. Higher potential plateau associated with oxidation of the substituted transition elements is also observed. These substituents also significantly alter the onset of Jahn-Teller distortions in the 3 V potential plateau. Synchrotron based in situ X-ray absorption (XAS) was used to determine the exact nature of the oxidation state changes in order to explain the overall observed capacities at different potential plateaus. The studies on LiCu0.5Mn1.5O4 show single phase behavior in the 4-5 V potential region with a good cycle life. Lower cycle life characteristic observed in cycling LiNi0.5Mn1.5O4 and LiNi0.25Cu0.25Mn1.5O4 versus Li metal are ascribed to coexistence of several phases in this potential region. However, LiCu0.5Mn1.5O4 shows onset of Jahn-Teller distortions in the 3 V potential plateau, in contrast to LiNi0.5Mn1.5O4 and LiNi0.25Cu0.25Mn1.5O4 cathode materials.  相似文献   
7.

With the exponential growth of end users and web data, the internet is undergoing the change of paradigm from a user-centric model to a content-centric one, popularly known as information-centric networks (ICN). Current ICN research evolves around three key-issues namely (i) content request searching, (ii) content routing, and (iii) in-network caching scheme to deliver the requested content to the end user. This would improve the user experience to obtain requested content because it lowers the download delay and provides higher throughput. Existing researches have mainly focused on on-path congestion or expected delivery time of a content to determine the optimized path towards custodian. However, it ignores the cumulative effect of the link-state parameters and the state of the cache, and consequently it leads to degrade the delay performance. In order to overcome this shortfall, we consider both the congestion of a link and the state of on-path caches to determine the best possible routes. We introduce a generic term entropy to quantify the effects of link congestion and state of on-path caches. Thereafter, we develop a novel entropy dependent algorithm namely ENROUTE for searching of content request triggered by any user, routing of this content, and caching for the delivery this requested content to the user. The entropy value of an intra-domain node indicates how many popular contents are already cached in the node, which, in turn, signifies the degree of enrichment of that node with the popular contents. On the other hand, the entropy for a link indicates how much the link is congested with the traversal of contents. In order to have reduced delay, we enhance the entropy of caches in nodes, and also use path with low entropy for downloading contents. We evaluate the performance of our proposed ENROUTE algorithm against state-of-the-art schemes for various network parameters and observe an improvement of 29–52% in delay, 12–39% in hit rate, and 4–39% in throughput.

  相似文献   
8.
In this paper, we present a new variant of Particle Swarm Optimization (PSO) for image segmentation using optimal multi-level thresholding. Some objective functions which are very efficient for bi-level thresholding purpose are not suitable for multi-level thresholding due to the exponential growth of computational complexity. The present paper also proposes an iterative scheme that is practically more suitable for obtaining initial values of candidate multilevel thresholds. This self iterative scheme is proposed to find the suitable number of thresholds that should be used to segment an image. This iterative scheme is based on the well known Otsu’s method, which shows a linear growth of computational complexity. The thresholds resulting from the iterative scheme are taken as initial thresholds and the particles are created randomly around these thresholds, for the proposed PSO variant. The proposed PSO algorithm makes a new contribution in adapting ‘social’ and ‘momentum’ components of the velocity equation for particle move updates. The proposed segmentation method is employed for four benchmark images and the performances obtained outperform results obtained with well known methods, like Gaussian-smoothing method (Lim, Y. K., & Lee, S. U. (1990). On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques. Pattern Recognition, 23, 935–952; Tsai, D. M. (1995). A fast thresholding selection procedure for multimodal and unimodal histograms. Pattern Recognition Letters, 16, 653–666), Symmetry-duality method (Yin, P. Y., & Chen, L. H. (1993). New method for multilevel thresholding using the symmetry and duality of the histogram. Journal of Electronics and Imaging, 2, 337–344), GA-based algorithm (Yin, P. -Y. (1999). A fast scheme for optimal thresholding using genetic algorithms. Signal Processing, 72, 85–95) and the basic PSO variant employing linearly decreasing inertia weight factor.  相似文献   
9.
In this paper, performance of piezoelectrically actuated pyramidal valveless micropumps is studied experimentally in detail. Valveless micropumps based on silicon and glass substrate are fabricated using MEMS technology. Two different sizes of micropumps having overall dimensions of 5 mm × 5 mm × 1 mm and 10 mm × 10 mm × 1 mm are fabricated and characterized. In the fabricated micropumps, the thickness of silicon diaphragm is <20 µm which gives the advantage of operating pump at low voltage with excellent stability and consistency. The performance of micropumps in terms of flowrate and backpressure is evaluated for a wide range of driving frequency and actuating voltages. The maximum flowrate of water in the 10-mm micropump is 355 µl/min and backpressure of 3.1 kPa at zero flowrate for an applied voltage of 80 V at frequency 1.05 kHz. The reported micropumps have low footprint, high flowrate and backpressure. Thus, these micropumps are especially suited for biological applications as these can withstand adequate amount of backpressure. Comparative study of the performance of these micropumps with those available in the literature brings out the efficacy of these micropumps.  相似文献   
10.
In human designer usage, symbols have a rich semantics, grounded on experience, which permits flexible usage — e.g. design ideation is improved by meanings triggered by contrastive words. In computational usage however, symbols are syntactic tokens whose semantics is mostly left to the implementation, resulting in brittle failures in many knowledge-based systems. Here we ask if one may define symbols in computational design as {label,meaning} pairs, as opposed to merely the label. We consider three questions that must be answered to bootstrap a symbol learning process: (a) which concepts are most relevant in a given domain, (b) how to define the semantics of such symbols, and (c) how to learn labels for these so as to form a grounded symbol. We propose that relevant symbols may be discovered by learning patterns of functional viability. The stable patterns are information-conserving codes, also called chunks in cognitive science, which relate to the process of acquiring expertise in humans. Regions of a design space that contain functionally superior designs can be mapped to a lower-dimensional manifold; the inter-relations of the design variables discovered thus constitute the chunks. Using these as the initial semantics for symbols, we show how the system can acquire labels for them by communicating with human designers. We demonstrate the first steps in this process in our baby designer approach, by learning two early grounded symbols, tight and loose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号