首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
一般工业技术   1篇
冶金工业   2篇
  2003年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
GABAA-mediated miniature IPSCs (mIPSCs) were recorded from layer V pyramidal neurons of the visual cortex using whole-cell patch-clamp recording in rat brain slices. At room temperature, the benzodiazepine site agonist zolpidem enhanced both the amplitude (to 138 +/- 26% of control value at 10 microM) and the duration (163 +/- 14%) of mIPSCs. The enhancement of mIPSC amplitude was not caused by an increase of the single-channel conductance of the postsynaptic receptors, as determined by peak-scaled non-stationary fluctuation analysis of mIPSCs. The effect of zolpidem on fast, synaptic-like (1 msec duration) applications of GABA to outside-out patches was also investigated. The EC50 for fast GABA applications was 310 microM. In patches, zolpidem enhanced the amplitude of currents elicited by subsaturating GABA applications (100-300 microM) but not by saturating applications (10 mM). The increase of mIPSC amplitude by zolpidem provides evidence that the GABAA receptors are not saturated during miniature synaptic transmission in the recorded cells. By comparing the facilitation induced by 1 microM zolpidem on outside-out patches and mIPSCs, we estimated the concentration of GABA seen by the postsynaptic GABAA receptors to be approximately 300 microM after single vesicle release. We have estimated a similar degree of receptor occupancy at room and physiological temperature. However, at 35 degreesC, zolpidem did not enhance the amplitude of mIPSCs or of subsaturating GABA applications on patches, implying that, in these neurons, zolpidem cannot be used to probe the degree of receptor occupancy at physiological temperature.  相似文献   
2.
Rings of 6–8 GeV with circumstance of about 2 km or more could provide X-ray brightness that significantly exceeds that of any present facility, opening new research opportunities.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号