首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
化学工业   3篇
轻工业   1篇
无线电   1篇
一般工业技术   2篇
  2022年   2篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Animal models, particularly rodents, are major translational models for evaluating novel anticancer therapeutics. In this review, different types of nanostructure‐based photosensitizers that have advanced into the in vivo evaluation stage for the photodynamic therapy (PDT) of cancer are described. This article focuses on the in vivo efficacies of the nanostructures as delivery agents and as energy transducers for photosensitizers in animal models. These materials are useful in overcoming solubility issues, lack of tumor specificity, and access to tumors deep in healthy tissue. At the end of this article, the opportunities made possible by these multiplexed nanostructure‐based systems are summarized, as well as the considerable challenges associated with obtaining regulatory approval for such materials. The following questions are also addressed: (1) Is there a pressing demand for more nanoparticle materials? (2) What is the prognosis for regulatory approval of nanoparticles to be used in the clinic?  相似文献   
2.
While position emission tomography (PET) is an important molecular imaging technique for both preclinical research and clinical disease diagnosis/prognosis, chelator‐free radiolabeling has emerged as a promising alternative approach to label biomolecules or nanoprobes in a facile way. Herein, starting from bottom‐up synthesized WS2 nanoflakes, this study fabricates a unique type of WS2/WOx nanodots, which can function as inherent hard oxygen donor for stable radiolabeling with Zirconium‐89 isotope (89Zr). Upon simply mixing, 89Zr can be anchored on the surface of polyethylene glycol (PEG) modified WS2/WOx (WS2/WOx‐PEG) nanodots via a chelator‐free method with surprisingly high labeling yield and great stability. A higher degree of oxidation in the WS2/WOx‐PEG sample (WS2/WOx (0.4)) produces more electron pairs, which would be beneficial for chelator‐free labeling of 89Zr with higher yields, suggesting the importance of surface chemistry and particle composition to the efficiency of chelator‐free radiolabeling. Such 89Zr‐WS2/WOx (0.4)‐PEG nanodots are found to be an excellent PET contrast agent for in vivo imaging of tumors upon intravenous administration, or mapping of draining lymph nodes after local injection.  相似文献   
3.
4.
Facile synthesis of 6- or 7-substituted coumarin-indomathacin hybrids (Coum-IDM) has been developed for specific cyclooxygenase-2 (COX-2) binding along with their intrinsic fluorescent properties. A mild and rapid condensation/dehydrative cyclization of 2-hydroxy benzaldehyde with activated indomethacin was carried out in one step under ultrasound irradiation. Coum-IDM4 was found to be the best of this series as it presented significant binding to COX-2 and exhibited higher fluorescent intensity in cancer cells than in normal cells. Therefore, in the light of drug development tools, this new hybrid system could be a potential targeted probe for COX-2-overexpressed inflammation and cancer-cell tracking.  相似文献   
5.
We designed and synthesized two heptamethine cyanine-based theranostic probes that aimed to target COX-2 in cancer cells. One is I-IR799 - CXB , in which I-IR799 is conjugated to the COX-2-specific inhibitor, celecoxib, and another is I-IR799 - IMC , where the non-selective COX inhibitor, indomethacin, was used. I-IR799 is a heptamethine cyanine derivative that can be activated by near-infrared light for photodynamic therapy (PDT) purposes. I-IR799 - CXB and I-IR799 - IMC were tested for their cancer-targeting capacity and photodynamic efficiency toward hepatocellular carcinoma (HepG2) cells relative to normal liver cells, alpha mouse liver 12 (AML12) cells. Interestingly, after conjugation, I-IR799 - IMC exhibited better tumour targetability and PDT efficiency than I-IR799 - CXB .  相似文献   
6.
Nanomaterials with renal clearance from the body within a reasonable timescale have shown great promises in the area of nanomedicine recently. However, the integration of theranostic and renal clearance properties into a single ultrasmall nanostructure remains a great challenge. Herein, meso‐tetra(4‐carboxyphenyl)porphyrin (TCPP) structure is utilized as a model, for the first time using noninvasive dynamic positron emission tomography (PET) imaging to investigate the balance of the renal clearance and tumor uptake behaviors of polyethylene glycol (PEG)‐modified porphyrin nanoparticles (TCPP‐PEG) with various molecular weights. This study finds that TCPP‐PEG nanoparticles with larger molecular weight show higher tumor uptake due to the enhanced permeability and retention effect, while the lower ones tend to be better for renal clearance. Based on dynamic PET and fluorescence dual‐modal imaging modalities, the TCPP‐PEG10K nanoparticles seem to be an excellent choice for the balance of renal clearance and tumor retention. In vitro and in vivo photodynamic therapy confirms an excellent therapeutic efficacy. Therefore, this work presents a simplified approach to fabricate and select biocompatible multifunctional TCPP‐PEG‐based theranostic agents with renal clearance behavior, which highlights the clinical application potential of TCPP‐PEG nanoparticles as theranostic probes for imaging‐guided cancer therapy.  相似文献   
7.
β-Nicotinamide mononucleotide (NMN) has recently gained attention for a nutritional supplement because it is an intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD+). In this study, we developed NMN synthesis by coupling two modules. The first module is to culture E. coli MG1655 ▵tktAtktBptsG to metabolize xylose to generate D-ribose in the medium. The supernatant containing D-ribose was applied in the second module which is composed of EcRbsK-EcPRPS-CpNAMPT reaction to synthesize NMN, that requires additional enzymes of CHU0107 and EcPPase to remove feedback inhibitors ADP and pyrophosphate. The second module can be rapidly optimized by comparing NMN production determined by the cyanide assay. Finally, 10 mL optimal biocascade reaction generated NMN with a good yield of 84 % from 1 mM D-ribose supplied from the supernatant of E. coli MG1655 ▵tktAtktBptsG. Our results can further guide researchers to metabolically engineer E. coli for NMN synthesis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号