首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   4篇
电工技术   9篇
化学工业   16篇
金属工艺   3篇
机械仪表   9篇
建筑科学   6篇
能源动力   17篇
轻工业   13篇
水利工程   4篇
石油天然气   1篇
无线电   12篇
一般工业技术   22篇
冶金工业   10篇
自动化技术   20篇
  2023年   3篇
  2021年   10篇
  2020年   6篇
  2019年   7篇
  2018年   13篇
  2017年   2篇
  2016年   8篇
  2015年   5篇
  2014年   9篇
  2013年   18篇
  2012年   4篇
  2011年   17篇
  2010年   9篇
  2009年   3篇
  2008年   4篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1987年   2篇
  1977年   1篇
  1973年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
1.
Omidi  M.  Arab  B.  Rasanan  A. H. Hadian  Rad  J. A.  Parand  K. 《Engineering with Computers》2021,37(2):1635-1655

In this paper, size-dependent dynamic stability of axially loaded functionally graded (FG) composite truncated conical microshells with magnetostrictive facesheets surrounded by nonlinear viscoelastic foundations including a two-parameter Winkler–Pasternak medium augmented via a Kelvin–Voigt viscoelastic approach is analyzed considering nonlinear cubic stiffness. To this purpose, von Karman-type kinematic nonlinearity along with modified couple stress theory of elasticity was applied to third-order shear deformation conical shell theory in the presence of magnetic permeability tensor and magnetic fluxes. The numerical technique of generalized differential quadrature (GDQ) was used for the solution of microstructural-dependent dynamic stability responses of FG composite truncated conical microshells. It was seen that moving from prebuckling to postbuckling domain somehow increased the significance of couple stress type of size dependency on frequency. In addition, within both prebuckling and postbuckling regimes, an increase of material gradient index decreased the importance of couple stress type of size dependency on the frequency of an axially loaded FG composite truncated conical microshell. Furthermore, it was revealed that by applying a positive magnetic field to an axially loaded truncated conical microshell with magnetostrictive facesheets, its frequency at a specific axial load value was increased in prebuckling domain and decreased in postbuckling domain. However, this pattern was reversed by applying a negative magnetic field.

  相似文献   
2.
3.
4.
An efficient approach was introduced for improving the condition of major controlled rolling process parameters of roughing, finishing and coiling temperatures and optimizing these parameters to obtain minimum grain size and maximum dome height simultaneously. Taguchi method combined with grey relational analysis was applied to achieve optimum grain size and dome height during controlled rolling process. For this purpose, four levels for the above temperatures were chosen and sixteen experiments were conducted based on orthogonal array of Taguchi method. Based on Taguchi approach, signal-to-noise (S/N) ratios were calculated and used in order to obtain the optimum levels for every input parameter. Analysis of variance revealed that finishing and coiling temperatures have the maximum effect on the grain size and dome height of microalloyed steels. The confirmation tests with the optimal levels of parameters indicated that the grain size and dome height of controlled rolled microalloyed steels can be improved effectively through this approach.  相似文献   
5.
In this study, a Z‐source alternating current‐to‐alternating current (AC–AC) converter with a specific topology, which can provide both buck and boost modes, is investigated. This converter, which can be implemented easily, utilizes only two switches with complemented commands. A comparison between the Z‐source AC–AC converter and a conventional thyristor voltage controlled one is presented here, and it shows that in the most areas, the Z‐source converter provides a faster response and lower total harmonic distortion of the output currents than the conventional one. Moreover, the Z‐source converter is also extended to the multiphase systems. In addition, a new arrangement of this converter is proposed here to remove the isolated single‐phase sources. Furthermore, an open‐loop method is proposed for soft‐starting applications. Finally, a closed‐loop control system is also suggested for a three‐phase Z‐source converter to soft start and control the speed of an induction motor. Computer simulations show the validity and effectiveness of the proposed schemes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
7.
Cr–SiC nanocomposite coatings with various contents of SiC nanoparticles were prepared by electrodeposition in optimized Cr plating bath containing different concentrations of SiC nanoparticles. Direct current electrocodeposition technique was used to deposit chromium layers with and without SiC nanoparticles on mild carbon steel. The effects of current density, stirring rate and concentration of nanoparticles in the plating bath were investigated. Scanning electron microscopy was used to study surface morphology. Energy dispersive analysis technique was used to verify the presence of SiC nanoparticles in the coated layers. The corrosion behaviors of coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy methods in 0.05 mol/L HCl, 1 mol/L NaOH and 3.5% NaCl (mass fraction), respectively. Microhardness measurements and pin-on-disc tribometer technique were used to investigate the wear behavior of the coatings.  相似文献   
8.
This paper proposes an uncertainty compensator to design a novel robust control for mobile robots with dynamic and kinematic uncertainties. A novel gradient-based adaptive fuzzy estimator is developed to compensate uncertainties with minimum required feedback signals. As a novelty, the proposed approach uses the tracking error and its first time derivative to form the estimation error of uncertainty, and guarantees that both the estimation error and tracking error converge asymmetrically to ignorable value. Advantages of the proposed robust control are simplicity in design, robustness against uncertainties, guaranteed stability, and good control performance. The control approach is verified by stability analysis. Simulation results and experimental results illustrate the effectiveness of the proposed control. Experimental evaluation of the proposed controller is expressed for two different low-cost nonholonomic wheeled mobile robots. The proposed control design is compared with an adaptive control approach to confirm the superiority of the proposed approach in terms of precision, simplicity of design, and computations.  相似文献   
9.
In this article, we study a stochastic approximation algorithm that approximates the exact root θ of a function M defined in ?d into ?d. The function M cannot be known exactly, but only noisy measurements are available at each point xn with the error ξn. The sequence of noise (ξn)n is random; we treat both cases where it is independent and dependent and we establish the complete convergence of the approximated sequence of θ.  相似文献   
10.
In this paper, a new predictive direct power control algorithm to control the PWM rectifier based on virtual flux (VF) is presented. In this algorithm, supply network and the line inductances are assumed as an induction machine and so virtual flux space vectors are assumed corresponding with the space vector of the network voltages. Instantaneous active and reactive powers and finally convertor average voltage in both stationary and rotating reference frames are calculated by the virtual flux space vector components. The main advantages of the proposed method are low total harmonic distortion of the input current and low ripple in the instantaneous active and reactive powers and direct current‐bus voltage under harmonic distorted condition of the supply voltage in comparison with voltage‐based predictive direct power control (V‐PDPC) method. Proposed VF‐PDPC method with space vector modulation switching strategy was tested in simulations and compared with the V‐PDPC method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号