首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学工业   3篇
一般工业技术   1篇
  2021年   4篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Cigarette smoking (CS) is one of the main factors related to avoidable diseases and death across the world. Cigarette smoke consists of numerous toxic compounds that contribute to the development of osteoporosis and fracture nonunion. Exposure to pulsed electromagnetic fields (PEMF) was proven to be a safe and effective therapy to support bone fracture healing. The aims of this study were to investigate if extremely low frequency (ELF-) PEMFs may be beneficial to treat CS-related bone disease, and which effect the duration of the exposure has. In this study, immortalized human mesenchymal stem cells (SCP-1 cells) impaired by 5% cigarette smoke extract (CSE) were exposed to ELF-PEMFs (16 Hz) with daily exposure ranging from 7 min to 90 min. Cell viability, adhesion, and spreading were evaluated by Sulforhodamine B, Calcein-AM staining, and Phalloidin-TRITC/Hoechst 33342 staining. A migration assay kit was used to determine cell migration. Changes in TGF-β signaling were evaluated with an adenoviral Smad2/3 reporter assay, RT-PCR, and Western blot. The structure and distribution of primary cilia were analyzed with immunofluorescent staining. Our data indicate that 30 min daily exposure to a specific ELF-PEMF most effectively promoted cell viability, enhanced cell adhesion and spreading, accelerated migration, and protected TGF-β signaling from CSE-induced harm. In summary, the current results provide evidence that ELF-PEMF can be used to support early bone healing in patients who smoke.  相似文献   
2.
Journal of Materials Science: Materials in Medicine - Surface modification of superparamagnetic Fe3O4 nanoparticles using polymers (polyaniline/polypyrrole) was done by radio frequency (r.f.)...  相似文献   
3.
Co-culture models have become mandatory for obtaining better insights into bone homeostasis, which relies on the balance between osteoblasts and osteoclasts. Cigarette smoking (CS) has been proven to increase the risk of osteoporosis; however, there is currently no proven treatment for osteoporosis in smokers excluding cessation. Bisphosphonates (BPs) are classical anti-osteoclastic drugs that are commonly used in examining the suitability of bone co-culture systems in vitro as well as to verify the response to osteoporotic stimuli. In the present study, we tested the effects of BPs on cigarette smoke extract (CSE)-affected cells in the co-culture of osteoblasts and osteoclasts. Our results showed that BPs were able to reduce CSE-induced osteoporotic alterations in the co-culture of osteoblasts and osteoclasts such as decreased matrix remodeling, enhanced osteoclast activation, and an up-regulated receptor activator of nuclear factor (NF)-kB-ligand (RANKL)/osteoprotegerin (OPG) ratio. In summary, BPs may be an effective alternative therapy for reversing osteoporotic alterations in smokers, and the potential mechanism is through modulation of the RANKL/OPG ratio.  相似文献   
4.
A large British study, with almost 3000 patients, identified diabetes as main risk factor for delayed and nonunion fracture healing, the treatment of which causes large costs for the health system. In the past years, much progress has been made to treat common complications in diabetics. However, there is still a lack of advanced strategies to treat diabetic bone diseases. To develop such therapeutic strategies, mechanisms leading to massive bone alterations in diabetics have to be well understood. We herein describe an in vitro model displaying bone metabolism frequently observed in diabetics. The model is based on osteoblastic SaOS-2 cells, which in direct coculture, stimulate THP-1 cells to form osteoclasts. While in conventional 2D cocultures formation of mineralized matrix is decreased under pre-/diabetic conditions, formation of mineralized matrix is increased in 3D cocultures. Furthermore, we demonstrate a matrix stability of the 3D carrier that is decreased under pre-/diabetic conditions, resembling the in vivo situation in type 2 diabetics. In summary, our results show that a 3D environment is required in this in vitro model to mimic alterations in bone metabolism characteristic for pre-/diabetes. The ability to measure both osteoblast and osteoclast function, and their effect on mineralization and stability of the 3D carrier offers the possibility to use this model also for other purposes, e.g., drug screenings.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号