首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
化学工业   17篇
无线电   1篇
一般工业技术   12篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1991年   3篇
  1990年   2篇
排序方式: 共有30条查询结果,搜索用时 550 毫秒
1.
Zinc oxide nanoparticles were prepared and subsequently deposited onto the surface of the cotton fiber by ultrasonic irradiation. The optical, structure and morphology of the coated and un-coated cotton were examined by UV, fourier transform infrared spectroscopy, X-ray diffraction analysis (XRD) and scanning electron microscope (SEM)/Energy Dispersive X-ray analysis. XRD analysis revealed the presence of the crystalline metal oxide of hexagonal phase with an average crystallite size of 12 nm. These nanoparticles are probably physically adsorbed onto the cotton fiber surface. SEM analysis showed a distribution of ZnO nanorod assemblies of various diameters and lengths physically adsorbed onto the cotton fiber surface may take place. The ZnO-cotton fiber nano-composite were tested against Escherichia coli (gram negative) and Staphylococcus aureus (gram positive) cultures, and showed a significant antimicrobial activity.  相似文献   
2.
Porous solid polysiloxane ligand systems bearing an iminodiacetic acid chelating ligand of the general formula P-IDA (where P- represents [Si-O] n polysiloxane network and IDA represent an organofunctional group) were achieved in two-step reaction. The first step includes a template synthesis of 3-iodopropylpolysiloxane (P-I) or 3-aminopropylpolysiloxane (P-MA) by hydrolytic polycondensation of TEOS and the corresponding silane agent in the presence of CTAB as a surfactant. The second step includes a modification of 3-iodopropylpolysiloxane with diethyliminodiacetate or 3-aminopropylpolysiloxane with ethylchloroacetate to produce IDA-functionalized polysiloxane ligand systems P-IDA-I & P-IDA-II respectively. It was found that the modified IDA-functionalized polysiloxane ligand systems exhibited higher capacities for uptake of the metal ions (Ni 2+, Cu 2+ and Pb 2+) than those prepared without surfactants.  相似文献   
3.
The structure and properties of polymer‐derived Si–(B–)O–C glasses have been shown to be significantly influenced by the boron content and pyrolysis temperature. This work determined the impact of these two parameters on the thermodynamic stability of these glasses. High‐temperature oxide melt solution calorimetry was performed on a series of amorphous samples, with varying boron contents (0–7.7 at.%), obtained by pyrolysis of precursors made by a sol–gel technique. Thermodynamic analysis of the calorimetric results demonstrated that at a constant pyrolysis temperature, adding boron makes the materials energetically less stable. While the B‐containing glasses pyrolyzed at 1000°C were energetically less stable than the competitive crystalline components, increasing the pyrolysis temperature to 1200°C led to their enthalpic stability. 29Si and 11B MAS nuclear magnetic resonance (NMR) spectroscopy measurements on selected samples confirmed a decrease in the concentrations of mixed Si‐centered SOiC4?i and B‐centered BOjC3?j bonds at the expense of formation of SiO4 and B(OSi)3 species (indicating a tendency toward phase separation) when the boron content and pyrolysis temperature increased. In light of the findings from calorimetry and NMR spectroscopy, we propose a structure–energetic relationship in Si–(B–)O–C glasses.  相似文献   
4.
SiOC glass monoliths possessing hierarchical porosity were produced by a one-pot processing method. Periodic mesoporous organosilica (PMO) particles were embedded into a foamed siloxane preceramic polymer. After pyrolysis at 1000°C in inert atmosphere, open celled, permeable SiOC ceramic monoliths with a high amount of pores, ranging in size from hundred of micrometers to a few nanometers, were obtained. The components possessed a specific surface area of 137 m2/g, indicating the retention of most of the mesopores after the pyrolytic conversion of the PMO precursor particles. These fillers converted to truncated rhombic dodecahedral SiOC mesoporous micron-sized grains, homogeneously distributed throughout the SiOC cellular matrix. The produced porous ceramics possessed compression strength of about 1.7 MPa, which is adequate for their use in several engineering applications.  相似文献   
5.
Polydimethylsiloxane–zirconia nanocomposites have been prepared by hydrolysis of diethoxydimethylsilane and zirconium n-propoxide in different molar ratios. Transparent, homogeneous and non-porous xerogels have been obtained up to 70 mol% ZrO2 content. The starting xerogels have been pyrolyzed under argon atmosphere up to 1400°C and the structural evolution of samples treated at different temperatures has been followed by X-ray diffraction, transmission electron microscopy, infrared and 29Si solid state nuclear magnetic resonance spectroscopies, thermal analyses and N2 sorption measurements. The polymer-to-ceramic conversion leads to the structural rearrangement of the siloxane component with the production at 600°C of high surface area materials with pore sizes below 3 nm. Samples are amorphous up to 800°C. At 1000°C, the structural evolution of the silicon moiety produces an amorphous oxycarbide phase whereas the primary crystallisation of tetragonal zirconia takes place, with crystallinity and crystallite sizes depending on the ZrO2 content. At 1400°C, the silicon oxycarbide phase generates a mixture of amorphous silica and crystalline silicon carbide polymorphs. In this matrix, tetragonal and monoclinic ZrO2 phases are present with ZrO2 average crystallite dimensions never exceeding 20 nm, for ZrO2 content ≤50 mol%. The tetragonal/monoclinic ratio as well as the crystallite sizes appear strictly related to the chemical composition. ©  相似文献   
6.
A polytitanocarbosilane has been prepared from polycarbosilane and titanium n-butoxide.29Si MAS-NMR was used to characterize the various steps of the conversion process of the polymer into the final ceramic. The reaction of titanium butoxide with polycarbosilane introduces oxygen into the polymer that seems to play an important role in the pyrolysis process. In the first stage up to 1000 ° C, the study reveals the cleavage of Si-C bonds and the formation of SiC4-xOx units. In the second stage, above 1000 ° C, the number of Si-O bonds decreases, probably due to a carbothermal reduction process. At 1500 ° C, the product can be described as a mixture of crystalline SiC and TiC with no excess carbon.  相似文献   
7.
Grazing incidence wide and small angle X‐ray scattering (GIWAXS and GISAXS) measurements have been used to study the crystallization kinetics of the organolead halide perovskite CH3NH3PbI3–xClx during thermal annealing. In situ GIWAXS measurements recorded during annealing are used to characterize and quantify the transition from a crystalline precursor to the perovskite structure. In situ GISAXS measurements indicate an evolution of crystallite sizes during annealing, with the number of crystallites having sizes between 30 and 400 nm increasing through the annealing process. Using ex situ scanning electron microscopy, this evolution in length scales is confirmed and a concurrent increase in film surface coverage is observed, a parameter crucial for efficient solar cell performance. A series of photovoltaic devices are then fabricated in which perovskite films have been annealed for different times, and variations in device performance are explained on the basis of X‐ray scattering measurements.  相似文献   
8.
The optical response of nanocomposite thin films formed by Cu nanoparticles (NPs) embedded in amorphous aluminium oxide (Al(2)O(3)) prepared by pulsed laser deposition (PLD) in vacuum is studied in order to investigate the possible existence of reactive processes on the Cu NPs during their covering with Al(2)O(3). The study is performed as a function of the laser fluence on the Al(2)O(3) target (0.6-4.6?J?cm(-2)), while the laser fluence for Cu ablation is kept constant (1.8?J?cm(-2)). The structural analysis of the films shows that they are formed by a high density of NPs with average dimensions in the 4.9-5.9?nm range. The optical response of the films has been followed in situ by real-time reflectivity measurements at 633?nm and after deposition by transmission measurements as a function of wavelength around the surface plasmon resonance (SPR). For low laser fluences on the Al(2)O(3) target, the absorption spectrum is dominated by a well-defined SPR absorption band at 1.9?eV. As the laser fluence is increased, the intensity of the absorption band associated with the SPR decreases and shifts to 2.1?eV. The films deposited at low fluences contain metallic Cu NPs and, as the laser fluence increases sputtering of Cu from the NPs and mixing of the species from the Al(2)O(3) deposition with the Cu from the NPs surface takes place. The latter process leads to the formation of an Al-Cu oxide cover on the Cu NPs. The present results provide evidence for mixing of species from the host and Cu at the surface of the NPs, and it is shown how the degree of mixing depends on the laser fluence used to ablate the Al(2)O(3) host target.  相似文献   
9.
The involvement of collagen in bone biomineralization is commonly admitted, yet its role remains unclear. Here we show that type I collagen in?vitro can initiate and orientate the growth of carbonated apatite mineral in the absence of any other vertebrate extracellular matrix molecules of calcifying tissues. We also show that the collagen matrix influences the structural characteristics on the atomic scale, and controls the size and the three-dimensional distribution of apatite at larger length scales. These results call into question recent consensus in the literature on the need for Ca-rich non-collagenous proteins for collagen mineralization to occur in vivo. Our model is based on a collagen/apatite self-assembly process that combines the ability to mimic the in vivo extracellular fluid with three major features inherent to living bone tissue, that is, high fibrillar density, monodispersed fibrils and long-range hierarchical organization.  相似文献   
10.
Generally, the Si–C–O system is composed of SiO2, SiC, and pure C as crystalline phases. In the present study, we focus on the preparation of ternary silicon oxycarbide compound. For this purpose, different mixtures of quartz, silicon, and graphite were ball milled to cover the following range of composition: (1) SiC x O2(1 – x) + excess of C; (2) SiC x O2(1 – x) stoichiometric; (3) SiC x O2(1 – x) + excess of Si. The course of the reaction is followed by X-ray diffraction, by measuring the relative intensity change of the Bragg's peaks as a function of the mechanical treatment. The Rietveld method is applied to the patterns for quantitative analysis and determination of crystallite size and microstrain. Finally, the behavior of each phase is reported across the three starting compositions examined here and the presence of silicon oxycarbide compounds induced by ball milling is assessed by [29Si-MAS]NMR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号