首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
电工技术   1篇
化学工业   3篇
机械仪表   1篇
轻工业   5篇
无线电   11篇
一般工业技术   14篇
冶金工业   2篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2003年   1篇
  1986年   1篇
排序方式: 共有37条查询结果,搜索用时 0 毫秒
1.
2.
针对导弹纵向通道存在干扰影响的问题,设计了一种复合控制方案.首先,选取超螺旋干扰观测器估计未知干扰,并设计积分滑模控制器补偿输入干扰产生的影响;其次,基于微分对策理论,结合自适应动态规划算法,设计单评价神经网络在线求解自适应最优控制器来抑制非匹配干扰,利用Lyapunov稳定性理论证明了闭环系统的稳定性和评价网络权值的...  相似文献   
3.
4.
Two-dimensional (2D) bismuth oxyselenide (Bi2O2Se) with high electron mobility shows great potential for nanoelectronics. Although the in-plane properties of Bi2O2Se have been widely studied, its out-of-plane electrical transport behavior remains elusive, despite its importance in fabricating devices with new functionality and high integration density. Here, the out-of-plane electrical properties of 2D Bi2O2Se at nanoscale are revealed by conductive atomic force microscope. This work finds that hillocks with tunable heights and sizes are formed on Bi2O2Se after applying a vertical electric field. Intriguingly, such hillocks are conductive in the vertical direction, resulting in a previously unknown out-of-plane resistance switching in thick Bi2O2Se flakes while ohmic conductive characteristic in thin ones. Furthermore, the transformation is observed from bipolar to stable unipolar conduction in thick Bi2O2Se flake possessing such hillocks, suggesting its potential to function as a selector in vertical devices. This work reveals the unique out-of-plane transport behavior of 2D Bi2O2Se, providing the basis for fabricating vertical devices based on this emerging 2D material.  相似文献   
5.
Modulating electronic structure of monolayer transition metal dichalcogenides (TMDCs) is important for many applications, and doping is an effective way toward this goal, yet is challenging to control. Here, the in situ substitutional doping of niobium (Nb) into TMDCs with tunable concentrations during chemical vapor deposition is reported. Taking monolayer WS2 as an example, doping Nb into its lattice leads to bandgap changes in the range of 1.98–1.65 eV. Noteworthy, electrical transport measurements and density functional theory calculations show that the 4d electron orbitals of the Nb dopants contribute to the density of states of Nb-doped WS2 around the Fermi level, resulting in an n- to p-type conversion. Nb-doping also reduces the energy barrier of hydrogen absorption in WS2, leading to an improved electrocatalytic hydrogen evolution performance. These results highlight the effectiveness of controlled doping in modulating the electronic structure of TMDCs and their use in electronic related applications.  相似文献   
6.
A good dispersion of single‐walled carbon nanotubes (SWCNTs) in liquid media is a prerequisite to fulfill many of their applications. This contribution reports an efficient approach to additive‐free dispersion of SWCNTs with the aid of functionalized carbonaceous byproducts (CBs, e.g., amorphous carbon, carbon nanoparticles, and carbonaceous fragments) in SWCNT products. SWCNT bundles are treated by oleum intercalation and nitric acid oxidation in sequence, which leads to the selective functionalization of the CBs while the structure and properties of the SWCNTs are well preserved. These functionalized CBs can improve the subsequent dispersion of SWCNTs and the majority of SWCNTs in the suspension are present in small bundles or individually. Moreover, SWCNT transparent conductive films (TCFs) are fabricated by using these suspensions. The SWCNT TCFs obtained can achieve a low sheet resistance of 76 and 133 Ω sq?1, with optical transmittance of 82% and 90% at 550 nm, respectively.  相似文献   
7.
Chen Z  Ren W  Gao L  Liu B  Pei S  Cheng HM 《Nature materials》2011,10(6):424-428
Integration of individual two-dimensional graphene sheets into macroscopic structures is essential for the application of graphene. A series of graphene-based composites and macroscopic structures have been recently fabricated using chemically derived graphene sheets. However, these composites and structures suffer from poor electrical conductivity because of the low quality and/or high inter-sheet junction contact resistance of the chemically derived graphene sheets. Here we report the direct synthesis of three-dimensional foam-like graphene macrostructures, which we call graphene foams (GFs), by template-directed chemical vapour deposition. A GF consists of an interconnected flexible network of graphene as the fast transport channel of charge carriers for high electrical conductivity. Even with a GF loading as low as ~0.5 wt%, GF/poly(dimethyl siloxane) composites show a very high electrical conductivity of ~10 S cm(-1), which is ~6 orders of magnitude higher than chemically derived graphene-based composites. Using this unique network structure and the outstanding electrical and mechanical properties of GFs, as an example, we demonstrate the great potential of GF/poly(dimethyl siloxane) composites for flexible, foldable and stretchable conductors.  相似文献   
8.
Different measuring methods relating to the prerotation flow in the entrance pipe of radial pumps are analyzed. The appearance of the prerotation flow is a result of the complicated fluid flow model, which appears as a consequence of the pump operating out of design limits and reduces pump efficiency. The goal of this contribution is in estimating the best measuring method, taking into account the inconvenience of conventional hot-wire and laser-Doppler anemometry. Therefore, two measuring systems—multiblade (ASB) and single blade (ASSB) anemometer—are introduced, analyzed and compared. The advantages of the introduced measuring system—ASB—are in its simple construction and simple use and its low price. The direction and swirl flow intensity in the entrance pipe of radial pumps and fans could be measured using this method.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号