首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
无线电   1篇
一般工业技术   5篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2013年   1篇
  2009年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
2.
Journal of Superconductivity and Novel Magnetism - In this work, the RMO3 (R?=?Pr, Nd and M?=?Fe, Co) perovskites had been synthesized by hydrothermal method. The structural...  相似文献   
3.
Nanoalloys (NAs) have extraordinary catalytic properties, but metals are often immiscible giving compositional limits on catalytic design. It is generally believed that solution‐based chemical synthesis is inadequate for obtaining NAs, and often exotic shock synthesis or severe decomposition or reduction reactions are required. However, such methods only work on the laboratory scale making real‐world applications difficult. Here, a general solvothermal method is reported to obtain phase‐pure bimetallic and high‐entropy nano‐alloys across the entire composition range. Tuning of solvent chemistry and precursors leads to six different bimetallic NAs: PdxRu1‐x, PtxRu1‐x, IrxRu1‐x, RhxRu1‐x, Ir1‐xPtx, and Rh1‐xPtx, without immiscibility regions. All samples have face‐centered‐cubic crystal structures, which have not previously been observed for the ruthenium‐based systems. Additionally, quaternary and quinary systems are produced, demonstrating the ability to obtain medium‐ and high‐entropy NAs. The method described herein provides a simple, general production method of previously unknown solid solutions throughout their entire composition range potentially allowing for detailed tuning of nanocatalyst properties.  相似文献   
4.
The extraordinary properties of lead‐halide perovskite materials have spurred intense research, as they have a realistic perspective to play an important role in future photovoltaic devices. It is known that these materials undergo a number of structural phase transitions as a function of temperature that markedly alter their optical and electronic properties. The precise phase transition temperature and exact crystal structure in each phase, however, are controversially discussed in the literature. The linear thermal expansion of single crystals of APbX3 (A = methylammonium (MA), formamidinium (FA); X = I, Br) below room temperature is measured using a high‐resolution capacitive dilatometer to determine the phase transition temperatures. For δ‐FAPbI3, two wide regions of negative thermal expansion below 173 and 54 K, and a cascade of sharp transitions for FAPbBr3 that have not previously been reported are uncovered. Their respective crystal phases are identified via powder X‐ray diffraction. Moreover, it is demonstrated that transport under steady‐state illumination is considerably altered at the structural phase transition in the MA compounds. The results provide advanced insights into the evolution of the crystal structure with decreasing temperature that are essential to interpret the growing interest in investigating the electronic, optical, and photonic properties of lead‐halide perovskite materials.  相似文献   
5.
Lead-free double perovskites have great potential as stable and nontoxic optoelectronic materials. Recently, Cs2AgBiBr6 has emerged as a promising material, with suboptimal photon-to-charge carrier conversion efficiency, yet well suited for high-energy photon-detection applications. Here, the optoelectronic and structural properties of pure Cs2AgBiBr6 and alkali-metal-substituted (Cs1−xYx)2AgBiBr6 (Y: Rb+, K+, Na+; x = 0.02) single crystals are investigated. Strikingly, alkali-substitution entails a tunability to the material system in its response to X-rays and structural properties that is most strongly revealed in Rb-substituted compounds whose X-ray sensitivity outperforms other double-perovskite-based devices reported. While the fundamental nature and magnitude of the bandgap remains unchanged, the alkali-substituted materials exhibit a threefold boost in their fundamental carrier recombination lifetime at room temperature. Moreover, an enhanced electron–acoustic phonon scattering is found compared to Cs2AgBiBr6. The study thus paves the way for employing cation substitution to tune the properties of double perovskites toward a new material platform for optoelectronics.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号