首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   8篇
化学工业   45篇
金属工艺   3篇
机械仪表   3篇
建筑科学   2篇
能源动力   6篇
轻工业   1篇
无线电   2篇
一般工业技术   38篇
冶金工业   19篇
自动化技术   14篇
  2022年   6篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   7篇
  2013年   13篇
  2012年   11篇
  2011年   14篇
  2010年   5篇
  2009年   12篇
  2008年   5篇
  2007年   4篇
  2006年   7篇
  2005年   3篇
  2004年   7篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1997年   1篇
  1994年   1篇
  1976年   1篇
排序方式: 共有133条查询结果,搜索用时 9 毫秒
1.
Many countries around the world have tremendous needs to repair and strengthen their transportation infrastructure. Almost everywhere, traffic loads have reached levels largely exceeding design expectations. Northern countries also experience severe winter conditions that are combined with an extensive use of deicing salts and accelerate structural deterioration. In Canada, the extent of deterioration has prompted many authorities, including the federal and provincial governments, to investigate the potential use of fiber-reinforced polymer products to extend the life of their existing structures. However, it is widely recognized that the large-scale implementation of these products is often impaired by the lack of data on their durability. This paper presents an experimental project undertaken in order to assess the durability of reinforced concrete beams externally strengthened with two types of carbon-fiber-reinforced polymer (CFRP). The beams were first exposed to either wet-dry cycles or continuous immersion in water and then were loaded in fatigue. Finally, they were tested quasi-statically under four-point bending up to failure. The test results presented here provide some insights on the potential long-term performance of CFRP-strengthened beams exposed to severe environmental conditions.  相似文献   
2.
The connection between cytoskeleton alterations and diseases is well known and has stimulated research on cell mechanics, aiming to develop reliable biomarkers. In this study, we present results on rheological, adhesion, and morphological properties of primary rat cardiac fibroblasts, the cytoskeleton of which was altered by treatment with cytochalasin D (Cyt-D) and nocodazole (Noc), respectively. We used two complementary techniques: quartz crystal microbalance (QCM) and digital holographic microscopy (DHM). Qualitative data on cell viscoelasticity and adhesion changes at the cell–substrate near-interface layer were obtained with QCM, while DHM allowed the measurement of morphological changes due to the cytoskeletal alterations. A rapid effect of Cyt-D was observed, leading to a reduction in cell viscosity, loss of adhesion, and cell rounding, often followed by detachment from the surface. Noc treatment, instead, induced slower but continuous variations in the rheological behavior for four hours of treatment. The higher vibrational energy dissipation reflected the cell’s ability to maintain a stable attachment to the substrate, while a cytoskeletal rearrangement occurs. In fact, along with the complete disaggregation of microtubules at prolonged drug exposure, a compensatory effect of actin polymerization emerged, with increased stress fiber formation.  相似文献   
3.
This work is focused on investigation of thermal, structural, optical, magnetic, and magneto-optical properties of novel titanium phosphate-tellurite glass applied as Faraday rotators. The glass belonging to the system 35Li2O–10Al2O3–5TiO2–45P2O5–5TeO2 was prepared by a nonconventional wet route of raw materials processing, followed by melting-quenching-annealing steps. Some important physical properties of the investigated glass have been measured and calculated, providing knowledge related to glass compactness, electronic structure, glass forming capability, etc. XRD analysis evidenced an amorphous network structure of the investigated glass. The optical absorption in the Vis domain is mainly due to Ti3+ ions and Te2 clusters formed during the glass melting process. A relatively low optical absorption is noticed over 600 nm that activates a significant Faraday magneto-optical effect. Photoluminescence bands in the blue, red, and infrared domains are observed, caused by Te2 clusters formed during the glass melting process. The magnetization in dependency on applied magnetic field reveals a complex behavior of the glass, depending on temperature. Thus, it is found a ferromagnetic behavior up to 2000 Oe, a paramagnetic component up to 40 000 Oe, followed by a diamagnetic one over 40 000 Oe. Faraday rotation angle and Verdet constant values in the visible domain are correlated with the reduced TeO2 content of the glass.  相似文献   
4.
A theoretical network model reproducing some significant features of the viscoelastic behavior of unentangled polymer melts reinforced with well dispersed non-agglomerated nanoparticles is presented. Nanocomposites with low filler volume fraction (∼10%) and strong polymer-filler interactions are considered. The model is calibrated based on results obtained from discrete simulations of the equilibrium molecular structure of the material. This analysis provides the statistics of the network of chains connecting fillers, of dangling strands having one end adsorbed onto fillers, and that of the population of loops surrounding each nanoparticle. The network kinetics depends on the attachment-detachment dynamics of grafted chains of various types and is modeled by using a set of convection equations for the probability distribution functions. The overall viscoelastic response depends strongly on the lifetime of the polymer-filler junctions. The largest reinforcement is observed at low strain rates and low frequency oscillations. A solid like behavior is predicted for systems in which the polymer molecules interact strongly with the nanoparticles, effect which is associated with the behavior of the network of bridging segments.  相似文献   
5.
Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.  相似文献   
6.
We described herein, the construction of an organic phase enzyme electrode (OPEE) via polyphenol oxidase (PPO) entrapment within a hydrophilic polypyrrole film electrogenerated from on a new bispyrrolic derivative (1) containing a long hydrophilic spacer. The so-called “adsorption step procedure” was adopted for the preparation of the organic phase PPO biosensor. The amperometric detection of catechol was carried out in anhydrous chloroform at −0.2 V versus Ag/AgCl. The electroanalytical parameters of the biosensor strongly depend on its configuration and on the hydration state of the enzyme matrix. The best sensitivity obtained for catechol in chloroform was 15.6 mA M−1 cm−2.  相似文献   
7.
We present the use of three silane reagents in the vapour phase to react with the surface of magnesium and compare their performance against uncoated material using an accelerated corrosion test. The influence of atmospheric exposure on the corrosion test was also considered and rationalised based on previous models of the magnesium surface. XPS analysis determined that the silanes coated the surface of the metal; the accelerated gas evolution test showed very good corrosion inhibition properties for triethoxy(1H,1H,2H,2H-perfluoro-1-octyl)silane (FSil) in comparison with 3-aminopropyltriethoxysilane (APTE) and the uncoated material. The surface functionalisation using vapour proves to be an effective solvent free method of engineering oxide surfaces.  相似文献   
8.
The oxidation kinetics of hydrosulphide by iron/cerium oxide‐hydroxide (FeCeOx) and dissolved oxygen (DO2) was studied at 0.1 MPa and 298 K in a batch slurry reactor. The oxidation of hydrosulphide by the FeCeOx/DO2 system proceeded via a combined heterogeneous–homogeneous pathway to yield zerovalent sulphur and thiosulphate. The role of dissolved oxygen was twofold: (i) it reoxidized the iron from Fe(II) to active Fe(III), (ii) it prompted the homogeneous oxidation of hydrosulphide to polysulphides and of polysulphides to thiosulphate. The Fe(III) in situ regeneration by DO2 showed that FeCeOx holds promise for a redox scrubbing process targeting the elimination of H2S from the Kraft mill effluents.  相似文献   
9.
The structural role of V in 28Li2O–72SiO2 (in mol%) lithium silicate glass doped with 0.5 mol% V2O5 was assessed using 29Si and 51V Nuclear Magnetic Resonance (NMR), Fourier-transform infrared (FTIR), and X-ray photoelectron (XPS) spectroscopy techniques. Despite the low amount of V2O5 used, the structural information obtained or deduced from the statistical analysis of the NMR data could explain the evolution of glass properties after V2O5 addition. The XPS results indicated that all vanadium exists in 5+ oxidation state. Both the 29Si NMR and FTIR data point toward an increase in the polymerization of the silicate network, caused by the V2O5 acting as network former, capable to form various tetrahedral units (for n = 0, 1, and 2) in the glasses. These units, which are similar to phosphate units, scavenge the Li+ ions and cause the silicate network to polymerize. However, in an overall balance, the entire glass network is depolymerized due to the additional nonbridging oxygens contributed by the vanadium polyhedra. The addition of vanadium causes the network to expand and increases the ionic conductivity.  相似文献   
10.
In many species, interval timing behavior is accurate—appropriate estimated durations—and scalar—errors vary linearly with estimated durations. Whereas accuracy has been previously examined, scalar timing has not been clearly demonstrated in house mice (Mus musculus), raising concerns about mouse models of human disease. The authors estimated timing accuracy and precision in C57BL/6 mice, the most used background strain for genetic models of human disease, in a peak-interval procedure with multiple intervals. Both when timing 2 intervals (Experiment 1) or 3 intervals (Experiment 2), C57BL/6 mice demonstrated varying degrees of timing accuracy. An important finding was that, both at the individual and group levels, their precision varied linearly with the subjective estimated duration. Further evidence for scalar timing was obtained using an intraclass correlation statistic. This is the first report of consistent, reliable scalar timing in a sizable sample of house mice, thus validating the peak-interval procedure as a valuable technique, the intraclass correlation statistic as a powerful test of the scalar property, and the C57BL/6 strain as a suitable background for behavioral investigations of genetically engineered mice modeling disorders of interval timing. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号