首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
一般工业技术   4篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Three different plastic films of biaxially oriented polypropylene (BOPP), biaxially oriented polyethylene terephthalate (BOPET) and low‐density polyethylene (LDPE) were perforated using Nd‐YAG laser. Effects of laser pulse energy were examined by varying energies from 50 to 250 mJ where the pulse duration and pulse repetition were kept constant at 10 ns and 1 Hz, respectively. It was found that perforation diameters of all films increased with increasing pulse energies. Observed perforations were different among the three film types. Explanation was contributed to material inherent property and its interaction with laser. Incorporation of an inorganic filler (i.e. silica based anti‐blocking agent used in packaging film) of 0.5 wt% into the LDPE films (0.5Si‐LDPE) could improve perforation performance for LDPE. This was attributed to an increased thermal diffusivity of the 0.5Si‐LDPE film. Commercial BOPET and BOPP films containing 97 microholes/m2 (hole diameter of ~100 µm) showed an improvement in oxygen transmission rates (OTR) of 18 and 5 times that of the neat films without perforation. In the case of perforated 0.5Si‐LDPE films having similar perforations of 97 microholes/m2 and perforation diameter of 100 µm, a two‐fold increase of OTR was obtained. Gas transmission rates of the microperforated films were measured based on the static method. Measured OTR and CO2TR values of the three films with varying perforation diameters in a range of ~40–300 µm were compared and discussed. Overall results clearly indicate that perforation by laser is an effective process in developing breathable films with tailored oxygen transmission property for fresh produce packaging. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
2.
Porous polypropylene (PP) films with greater gas permeability and lower permeability ratios (β) than existing commercial films were developed for fresh produce packaging. PP containing high content of beta‐form crystal was biaxially stretched under controlled conditions. Resulting porous films with uniquely high oxygen transmission rate (OTR) of 2 659 000 cm3?m?2?d?1, water vapor transmission rate of 67 g?m?2?d?1, and β value of 0.76 was used as a “breathable window” attached to the less permeable commercial BOPP (biaxially oriented PP) lidding film. Various sizes/areas of the breathable windows were designed and tested on packaging asparagus of 400 g, at 5°C. Results demonstrated that in‐pack O2 and CO2 concentrations could be practically controlled and modified by changing areas of the breathable windows. Altered porous high OTR area directly affected total gas permeation of the package. Optimum gas composition of Ο2 and CΟ2 within the recommended controlled atmosphere for asparagus, stored at 5°C, was effectively created and maintained in the package containing 25 cm2 breathable window (15% of total film lid's area). The shelf life of asparagus under optimum modified atmosphere was extended to 29 days, as compared with <3 days in the normal, low OTR tray sealed with BOPP lidding film. Clearly, these developed porous ultrahigh permeable PP films can be useful materials in designing high OTR package with desirable in‐pack O2 and CO2 concentrations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
3.
The symmetrical A/B/A structure of multilayer blown films was fabricated in this study. The immiscible low‐density polyethylene/polylactic acid (LDPE/PLA) blend was set as a core (B) layer and LDPE was used as skin (A) layers. The compositions of PLA in the core layer were varied from 20 to 50 wt%. The thickness of each layer was 10 μm (total film thickness of ~ 30 μm). In a blown film co‐extrusion process, the morphology of the fiber/ribbon‐like structures of LDPE/PLA blend was developed. Such structures had interesting effects on gas permeability and aroma barrier properties of the films. For instance, multilayer LDPE films containing 40 and 50 wt% PLA (P40 and P50) showed the reduction of oxygen permeability (PO2) approximately 20% and 43%, respectively, compared with the neat LDPE film. A long tortuous path for gas and aroma transportation through film thickness was created from the developed ribbon‐like structures of the PLA minor phase. For durian packaging application, fresh‐cut durian of 300 g was packed in the developed multilayer films, LDPE, and HDPE (Control), stored at 4°C for 7 days. Results demonstrated that the steady‐state condition of 10% to 13% O2 and 8% to 10% CO2 was achieved in all packages except in the HDPE. Moreover, the P40 and P50 films exhibited an outstanding aroma barrier property for three major durian volatiles : diethyl sulfide, ethyl propanoate, and 2‐ethyl‐1‐hexanol. Overall results clearly indicated that the multilayer LDPE films containing PLA exhibited a significantly improved aroma barrier performance with optimum gas permeability desirable for modified atmosphere packaging to retain quality of fresh‐cut durian throughout the storage period.  相似文献   
4.
The biaxially oriented poly(lactic acid) films prepared using simultaneous biaxial stretching were perforated by CO2 laser with the power of 60 W. The focal spot diameter was fixed at 103 μm. Pulse durations were varied from 1 to 30 μs, which corresponds to the fluence from 1.4 to 42.6 J/cm2. The perforated microhole size increased with increasing laser energy. The shape of microholes was circular for the films of equi‐biaxial stretching, whereas elliptical microholes were formed with its long and short axes corresponding to the directions of higher and lower stretch ratios, respectively. Comparing the laser perforation behavior of the as‐drawn films and annealed films, the opening of a microhole in the annealed films started at higher laser fluence, and at the same fluence the size of microhole was smaller. Gas transmission rates of the biaxially oriented poly(lactic acid) films with different thicknesses were examined. The oxygen transmission rates (OTR) of film improved with increased microhole diameter. The OTR of films containing 1 microhole/103 cm2 (hole diameter of ~110 μm) was 184, 150, and 98 cm3/d in comparison with the OTR for the original films without microhole of only 16, 10, and 8 cm3/d, respectively. Packaging films with OTR higher than 100 cm3/d (equivalent to the 9700 cm3/m2/d) are required to create a modified atmosphere inside the package of fresh produce for shelf‐life extension. Measured OTR and CO2TR values of the 3 different shapes of microhole were compared and discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号