首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
能源动力   13篇
一般工业技术   1篇
  2021年   3篇
  2013年   2篇
  2012年   6篇
  2011年   1篇
  2010年   2篇
排序方式: 共有14条查询结果,搜索用时 140 毫秒
1.
The feasibility of hydrogen production from distillers grains substrate, an industrial cellulosic waste, was investigated. A substrate concentration of 80 g/L gave the maximum production at 50 °C and pH of 6.0 using sewage sludge. Four controllable factors with three levels: seed sludge (two sewage sludges and cow dung), temperature (40, 50, and 60 °C), pH (6, 7 and 8) and seed pretreatment (none, heat, and acid) were selected in Taguchi experimental design to optimize fermentation conditions. The peak hydrogen and ethanol productions were found with heat-treated cow dung seed, substrate concentration 80 g/L, 50 °C and pH 6. The peak hydrogen production rate and hydrogen yield were 7.9 mmol H2/L/d and 0.40 mmol H2/g-COD respectively whereas the peak ethanol production was 3050 mg COD/L and rate 0.22 g EtOH/L/d. A total bioenergy yield of 41 J/g substrate was obtained which was 21% and 79% from hydrogen and ethanol respectively.  相似文献   
2.
The present study deals with the biohydrogen production from starch-containing wastewater collected from the textile industry in Taiwan. The effects of inoculums collected from different sources (sewage sludge, soil and cow dung), substrate concentrations (5–25 g COD/L) and pH (4.0–8.0) on hydrogen production from wastewater were investigated.  相似文献   
3.
A high-rate hydrogen production process able to produce H2 at a maximum rate of 15 L/L/h was successfully developed by the Feng Chia University (FCU) biohydrogen research team. This highly efficient hydrogen fermentation system includes a 400 L pilot-scale system constructed for determining scale-up operation parameters for commercializing the bioH2 production technology. The pilot-scale system is composed of a feedstock tank, mixing system, fermentor, gas/liquid separator and automatic control system. The fermentor is fed with sucrose (20 g COD/L) and operated at 35 °C. A batch strategy is used for system start-up. The fermentor was first operated in a batch mode for two days and then switched to a continuous-feeding mode (HRT 12 h) for one month. During the continuous operation, pH notably affected H2 production efficiency and bacterial community. For the first 14-day operation, the H2 production rate increased from 0.017 to 0.256 L/L/h with a pH variation from 5.0 to 7.0. The DGGE results indicate the presence of two Clostridium species (namely, Clostridium butyricum and Clostridium pasteurianum) in the fermenter. Stable hydrogen production rate was obtained at pH 5.5–6.0 when C. pasteurianum became dominant in the mixed culture.  相似文献   
4.
Hythane is a mixture of hydrogen and methane gases which are generally produced in separate ways. This work studied mesophilic biohythane gas (H2+CH4+CO2) production in a bioreactor via single-stage dark fermentation. The fermentation was conducted in batch mode using mixed anaerobic microflora and food waste and condensed molasses fermentation soluble to elucidate the effects of food to microorganisms (F/M) ratio (ranging from 0.2 to 38.2) on gas production, metabolite variation, kinetics and biohythane-composition indicator performances. The experimental results indicate that the F/M ratio and fermentation time affect biohythane production efficiency with values of peak maximum hydrogen production rate 9.60 L/L-d, maximum methane production rate 0.72 L/L-d, and hydrogen yield (HY) of 6.17 mol H2/kg CODadded. Depending on the F/M ratios, the H2, CH4 and CO2 biogas components were 10–60%, 5–20% and 35–70%, respectively. Prospects for the further real application for single-stage biohythane fermentation based on the experimental data are proposed. This work characterizes an important reactor operation factor F/M ratio for innovative single-stage dark fermentation.  相似文献   
5.
Using anaerobic micro-organisms to convert organic waste to produce hydrogen gas gives the benefits of energy recovery and environmental protection. The objective of this study was to develop a biohydrogen production technology from food wastewater focusing on hydrogen production efficiency and micro-flora community at different hydraulic retention times. Soluble condensed molasses fermentation (CMS) was used as the substrate because it is sacchariferous and ideal for hydrogen production. CMS contains nutrient components that are necessary for bacterial growth: microbial protein, amino acids, organic acids, vitamins and coenzymes. The seed sludge was obtained from the waste activated sludge from a municipal sewage treatment plant in Central Taiwan. This seed sludge was rich in Clostridium sp.A CSTR (continuously stirred tank reactor) lab-scale hydrogen fermentor (working volume, 4.0 L) was operated at a hydraulic retention time (HRT) of 3–24 h with an influent CMS concentration of 40 g COD/L. The results showed that the peak hydrogen production rate of 390 mmol H2/L-d occurred at an organic loading rate (OLR) of 320 g COD/L-d at a HRT of 3 h. The peak hydrogen yield was obtained at an OLR of 80 g COD/L-d at a HRT of 12 h. At HRT 8 h, all hydrogenase mRNA detected were from Clostridium acetobutylicum-like and Clostridium pasteurianum-like hydrogen-producing bacteria by RT-PCR analysis. RNA based hydrogenase gene and 16S rRNA gene analysis suggests that Clostridium exists in the fermentative hydrogen-producing system and might be the dominant hydrogen-producing bacteria at tested HRTs (except 3 h). The hydrogen production feedstock from CMS is lower than that of sucrose and starch because CMS is a waste and has zero cost, requiring no added nutrients. Therefore, producing hydrogen from food wastewater is a more commercially feasible bioprocess.  相似文献   
6.
Clean Technologies and Environmental Policy - The cathodic microalgae-based MFC converts the nutrients within wastewater and produces oxygen as oxygen supply for cathodic reactions, leading to the...  相似文献   
7.
An exoelectrogenic culture was enriched on 1.0 g/L xylose from a compost sample in two-chamber microbial fuel cells (MFCs). Electricity production was optimized by changing mixing type, external resistance, xylose concentration and pH. Furthermore, the changes in microbial communities after each optimization step were monitored with PCR-DGGE. Electricity production was highly dependent on operational conditions that affected power densities (PD), Coulombic efficiencies (CE), substrate degradation, utilization of soluble metabolites for electricity production and stability of MFC performance. The optimum operational conditions for electricity production were without mixing, 100 Ω external resistance, 0.5 g/L xylose and pH 7. With optimized operational conditions PD of 590 mW/m2 and CE of 82% were obtained. Microbial community composition, consisting mainly of Geobacter sulfurreducens, Escherichia coli, Sphaerochaeta sp. TQ1 and Bacteroides species, was mainly affected by MFC configuration, i.e. electrical connections, which likely affected the anode potential.  相似文献   
8.
9.
The mushroom bag is a polypropylene bag stuffed with wood flour and bacterial nutrients. After being used for growing mushroom for one to two weeks this bag becomes mushroom cultivation waste (MCW). About 150 million bags (80,000 tons) of MCW are produced annually in Taiwan and are usually burned or discarded. The cellulosic materials and nutrients in MCW could be used as the feedstock and nutrients for anaerobic biohydrogen fermentation. This study aims to select the inoculum from various waste sludges (sewage sludge I, sewage sludge II, cow dung and pig slurry) with or without adding any extra nutrients. A batch test was operated at a MCW concentration of 20 g COD/L, temperature 55 °C and an initial cultivation pH of 8. The results show that extra nutrient addition inhibited hydrogen production rate (HPR) and hydrogen production yield (HY) when using cow dung and pig slurry seeds. However, nutrient addition enhanced the HPR and HY in case of using sewage sludge inoculum and without inoculum. This related to the inhibition caused by high nutrient concentration (such as nitrogen) in cow dung and pig slurry. Peak HY of 0.73 mmol H2/g TVS was obtained with no inoculum and nutrient addition. However, peak HPR and specific hydrogen production rate (SHPR) of 10.11 mmol H2/L/d and 2.02 mmol H2/g VSS/d, respectively, were obtained by using cow dung inoculum without any extra nutrient addition.  相似文献   
10.
Biohydrogen production from untreated rice straw using different heat-treated sludge, initial cultivation pH, substrate concentration and particle size was evaluated at 55 °C. The peak hydrogen production yield of 24.8 mL/g TS was obtained with rice straw concentration 90 g TS/L, particle size <0.297 mm and heat-treated sludge S1 at pH 6.5 and 55 °C in batch test. Hydrogen production using sludge S1 resulted from acetate-type fermentation and was pH dependent. The maximum hydrogen production (P), production rate (Rm) and lag (λ) were 733 mL, 18 mL/h and 45 h respectively. Repeated-batch operation showed decreasing trend in hydrogen production probably due to overloading of substrate and its non-utilization. PCR-DGGE showed both hydrolytic and fermentative bacteria (Clostridium pasteurianum, Clostridium stercorarium and Thermoanaerobacterium saccharolyticum) in the repeated-batch reactor, which perhaps in association led to the microbial hydrolysis and fermentation of raw rice straw avoiding the pretreatment step.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号