首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   11篇
化学工业   9篇
机械仪表   1篇
水利工程   1篇
无线电   2篇
一般工业技术   37篇
自动化技术   3篇
  2022年   2篇
  2020年   7篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2003年   1篇
排序方式: 共有53条查询结果,搜索用时 62 毫秒
1.
The aim of this study was to investigate the drug‐loading effects on release and mechanical properties of a scleroglucan gel, with the intention of considering them in delivery systems formulations. The rheological and kinetic properties of a 2 % w/w scleroglucan gel matrix loaded with 0, 0.02, 0.04, 0.06, 0.2 and 0.4 % w/w of theophylline (Th, used as a model drug) were investigated. Rheological measurements were performed in a controlled‐stress rotational‐shear rheometer under isothermal conditions. For theophylline release from the gel a flat Franz cell was used and the kinetic parameters were derived applying a semi‐empirical power law. The influence of scleroglucan molar weight on kinetic and rheological behaviour was also studied. Results suggest two possible effects of drug loading on the gel network: in the 0.04–0.06 % w/w Th range a plasticizing effect and in the 0.2–0.4 % w/w Th range a rigidization effect. In the first range mentioned, the changes in the gel structural properties tested by means of rheological measurements are coincident with changes in drug‐release kinetics. Copyright © 2005 Society of Chemical Industry  相似文献   
2.
3.
This article deals with the drug release behavior of theophylline (Th) from poly(vinyl alcohol) (PVA) hydrogels, prepared with magnetic nanoparticles at different particle loadings. These biocompatible matrices were obtained by incorporating different amounts of an aqueous ferrofluid into PVA hydrogels, loaded with Th as a marker for drug‐delivery studies. PVA films with magnetic particles proved to be magnetic field‐responsive materials as the drug release decreased through the application of a relative low and uniform magnetic field for particle concentrations of 0.9% w/w or higher. Moreover, the percentage of restriction of drug release is found to be correlated with particle loading. The in vitro release profiles were analyzed by applying a semiempirical power law to obtain the kinetic parameters. The value of the release exponent was found to be in the range 0.54–0.56 in all experiments, which thus indicates a predominant diffusional mechanism for drug release from these smart magnetic hydrogels. This effect suggests the possibility of modulating the release behavior by controlling the particle content in the preparation of the composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
4.
This study examined the effect of the freeze‐thaw process on the physical properties of films prepared from scleroglucan (Scl) hydrogels, suitable for drug delivery applications. Films made from Scl, using glycerol as plasticizer, were prepared from hydrogels by two procedures: a room temperature drying (RTD) method and a freeze‐thaw cyclic process, before the application of RTD, which results in a reinforced physically cross‐linked network. Films were characterized by studies of water vapor transmission (WVT), swelling, tensile tests, ESEM microscopy, FTIR, and drug release measurements. These determinations showed significant differences between films obtained by both treatments. The films prepared through freeze‐thaw cycles showed an important increase of the tensile strength with respect to those corresponding to films only air dried and a decreasing swelling degree in direct relationship to the number of freeze‐thaw cycles. A model drug, Theophylline, was included in these biocompatible films for in vitro drug release measurements, using a flat Franz cell. The physical differences observed between Scl films prepared with both methods can be explained proposing that the number of crosslinking points by hydrogen bonding increase when increasing the number of freezing and thawing cycles used for film preparation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
5.
This contribution is the first attempt to systematically review all empirical surveys that so far have been made available in the broad field of efficiency and productivity analysis using frontier estimation methodologies. We provide a systematic bibliometric review on the many empirical surveys in the field of efficiency and productivity analysis, the most relevant concepts, areas, overlaps, and potentials to explore from its introduction to the most recent surveys. We combine the United Nations’ International Standard Industrial Classification (ISIC) taxonomy for the economic activity with the Journal of Economic Literature (JEL) classification system to classify the empirical surveys and to identify the current gaps in the literature. In addition to the most relevant/generic potential areas for applications (according to the United Nation's ISIC), this methodology provides a cluster analysis with the most relevant concepts that have been considered so far (according to the JEL codes). This overview brings an interesting guide for future work to develop the whole field.  相似文献   
6.
Daraio  Cinzia  Vaccari  Alessio 《Scientometrics》2020,124(2):1053-1080

This paper is an attempt of using co-citation analysis to sort out and to analyze the development and evolution of a latest hot area, open innovation from the perspective of network embedding. A dataset of 1437 records published between 1990 and 2019 is collected from Web of Science database. The empirical results show the latest hot topics in the open innovation study focus on innovation performance and value creation. In addition, we make a new interpretation of open innovation from four aspects: innovation and entrepreneurship, resource acquisition, knowledge sharing and innovation performance, then combines the importance of network embedding to the innovation and development of enterprises, and proposes the future research direction of open innovation. Our research in this paper is helpful to systematically sort out the knowledge context of open innovation, which is of great significance to the construction and development of open innovation knowledge system. The conclusions and implications in this paper will be particularly illuminating for both academic research and enterprises’ practice application.

  相似文献   
7.
Structures that change their shape in response to external stimuli unfold possibilities for more efficient and versatile production of 3D objects. Direct laser writing (DLW) is a technique based on two‐photon polymerization that allows the fabrication of microstructures with complex 3D geometries. Here, it is shown that polymerization shrinkage in DLW can be utilized to create structures with locally controllable residual stresses that enable programmable, self‐bending behavior. To demonstrate this concept, planar and 3D‐structured sheets are preprogrammed to evolve into bio‐inspired shapes (lotus flowers and shark skins). The fundamental mechanisms that control the self‐bending behavior are identified and tested with microscale experiments. Based on the findings, an analytical model is introduced to quantitatively predict bending curvatures of the fabricated sheets. The proposed method enables simple fabrication of objects with complex geometries and precisely controllable shape morphing potential, while drastically reducing the required fabrication times for producing 3D, hierarchical microstructures over large areas in the order of square centimeters.  相似文献   
8.
Moschini  Ugo  Fenialdi  Elena  Daraio  Cinzia  Ruocco  Giancarlo  Molinari  Elisa 《Scientometrics》2020,125(2):1145-1158
Scientometrics - In this paper, we compare the distribution of Elsevier Scopus subject areas of authors’ documents, their bibliographical references and their citing documents. We compute the...  相似文献   
9.
10.
In the field of flexible electronics, emerging applications require biocompatible and unobtrusive devices, which can withstand different modes of mechanical deformation and achieve low complexity in the fabrication process. Here, the fabrication of a mesa‐shaped elastomeric substrate, supporting thin‐film transistors (TFTs) and logic circuits (inverters), is reported. High‐relief structures are designed to minimize the strain experienced by the electronics, which are fabricated directly on the pillars' surface. In this design configuration, devices based on amorphous indium‐gallium‐zinc‐oxide can withstand different modes of deformation. Bending, stretching, and twisting experiments up to 6 mm radius, 20% uniaxial strain, and 180° global twisting, respectively, are performed to show stable electrical performance of the TFTs. Similarly, a fully integrated digital inverter is tested while stretched up to 20% elongation. As a proof of the versatility of mesa‐shaped geometry, a biocompatible and stretchable sensor for temperature mapping is also realized. Using pectin, which is a temperature‐sensitive material present in plant cells, the response of the sensor shows current modulation from 13 to 28 °C and functionality up to 15% strain. These results demonstrate the performance of highly flexible electronics for a broad variety of applications, including smart skin and health monitoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号