首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113932篇
  免费   20510篇
  国内免费   3078篇
电工技术   4819篇
技术理论   2篇
综合类   4580篇
化学工业   29413篇
金属工艺   3778篇
机械仪表   5098篇
建筑科学   7609篇
矿业工程   1723篇
能源动力   3298篇
轻工业   12827篇
水利工程   1642篇
石油天然气   3045篇
武器工业   491篇
无线电   16016篇
一般工业技术   20670篇
冶金工业   6770篇
原子能技术   863篇
自动化技术   14876篇
  2024年   213篇
  2023年   988篇
  2022年   1949篇
  2021年   3051篇
  2020年   3407篇
  2019年   4835篇
  2018年   4961篇
  2017年   5480篇
  2016年   5768篇
  2015年   6460篇
  2014年   7101篇
  2013年   9322篇
  2012年   7297篇
  2011年   7198篇
  2010年   6742篇
  2009年   6548篇
  2008年   6059篇
  2007年   5793篇
  2006年   5360篇
  2005年   4575篇
  2004年   3917篇
  2003年   3999篇
  2002年   4378篇
  2001年   3841篇
  2000年   3059篇
  1999年   2308篇
  1998年   2498篇
  1997年   1823篇
  1996年   1564篇
  1995年   1158篇
  1994年   897篇
  1993年   894篇
  1992年   565篇
  1991年   428篇
  1990年   410篇
  1989年   314篇
  1988年   282篇
  1987年   212篇
  1986年   204篇
  1985年   210篇
  1984年   137篇
  1983年   129篇
  1982年   117篇
  1981年   129篇
  1980年   123篇
  1979年   77篇
  1978年   57篇
  1977年   111篇
  1976年   204篇
  1973年   60篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Feng  Wenran  Li  Zhen  Chen  Yingying  Chen  Jinyang  Lang  Haoze  Wan  Jianghong  Gao  Yan  Dong  Haitao 《Journal of Materials Science》2022,57(3):1881-1889
Journal of Materials Science - Although chalcogenide materials continue to generate considerable interest due to great potentials for various optoelectronic devices, annealing for a long time in...  相似文献   
2.
3.
In this paper, a novel hybrid structure of Pd doped ZnO/SnO2 heterojunction nanofibers with hexagonal ZnO columns was one step synthesized from electrospun precursor nanofibers. Due to the synergistic effect of hexagonal ZnO, SnO2 and Pd, the structure exhibited excellent hydrogen (H2) gas sensing properties. At low-temperature of 120 °C, the response (Ra/Rg) to 100 ppm H2 gas exceeded 160, the response/recovery time was only 20 s and 6 s respectively and the limit of detection was only 0.5 ppm. Meanwhile, it also had good selectivity for H2 gas and excellent linearity. In addition, the materials were characterized by XRD, FESEM, HRTEM, XPS, and the synthesis mechanism and gas sensing mechanism were proposed.  相似文献   
4.
5.
With the continuous development of bionics, such as, geckos and virginia creeper with both superhydrophobic and super-adhesive, the surface wetting and super-adhesive properties of various porous materials have attracted extensive attention of the scientific and medical communities. Here, the honeycomb polyurethane (PU) porous films with strong adhesion were successfully prepared by microphase separation method and the effects of growth parameters on their microstructure and adhesive strength to ice were investigated. It was found that a high relative humidity (e.g., 100%) and a low solution concentration (e.g., 2%) facilitated the formation of ordered honeycomb PU porous films, and as-prepared PU pores with average pore diameter as small as 5 μm are better ordered and more uniform than these in related documents. Although the contact angle of water droplets on the surface of PU porous films increased from the premodification value of 85–130° to more than 160° after surface modification with polydopamine (PDA), the corresponding rolling angle remained approximately constant (180°), indicating that the surface of PU porous films has strong adhesion similar to geckos and virginia creeper. Furthermore, at lower temperature, the PU porous films exhibited the high adhesive strength of 142.13 kPa on ice, which was strongly dependent on the porous microstructures and surface compositions. The improved adhesive behavior to ice of honeycomb PU porous films modified with PDA provides new strategies for surface modification of materials and potential applications in medical domain.  相似文献   
6.
Mesenchymal stem cells (MSCs) are the main cell players in tissue repair and thanks to their self-renewal and multi-lineage differentiation capabilities, they gained significant attention as cell source for tissue engineering (TE) approaches aimed at restoring bone and cartilage defects. Despite significant progress, their therapeutic application remains debated: the TE construct often fails to completely restore the biomechanical properties of the native tissue, leading to poor clinical outcomes in the long term. Pulsed electromagnetic fields (PEMFs) are currently used as a safe and non-invasive treatment to enhance bone healing and to provide joint protection. PEMFs enhance both osteogenic and chondrogenic differentiation of MSCs. Here, we provide extensive review of the signaling pathways modulated by PEMFs during MSCs osteogenic and chondrogenic differentiation. Particular attention has been given to the PEMF-mediated activation of the adenosine signaling and their regulation of the inflammatory response as key player in TE approaches. Overall, the application of PEMFs in tissue repair is foreseen: (1) in vitro: to improve the functional and mechanical properties of the engineered construct; (2) in vivo: (i) to favor graft integration, (ii) to control the local inflammatory response, and (iii) to foster tissue repair from both implanted and resident MSCs cells.  相似文献   
7.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
8.
This work aimed to examine the performance of the hybrid sintering of clay ceramic in a microwave furnace, compared to the sintering process in a conventional furnace. The raw materials were subjected to X-ray fluorescence, loss on ignition (LOI), X-ray diffraction, particle size distribution, real specific mass, and thermogravimetric analyses. The red clay ceramic mass was prepared, extruded, pre-sintered in a conventional furnace at 600°C/60 min, and sintered at temperatures between 700 °C and 1100 °C. The sintering conventional (resistive oven) was carried out for 60 min with a heating rate of 10°C/min. In the microwave furnace, the sintering times were 5, 10, and 15 min, with a heating rate of 50°C/min, with a sintering chamber coated with silicon carbide (susceptor). The sintered specimens were characterized according to linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, Raman spectroscopy analysis, spectroscopy analysis in the ultraviolet and visible regions, microhardness, and scanning electron microscopy. The results showed that microwave sintering promoted an increase in the microhardness and apparent specific mass, and reduction in water absorption and apparent porosity values, due to greater densification in the microstructure. The best results occurred for specimens sintered at 1100°C.  相似文献   
9.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
10.
The noninvasive sampling of dermal interstitial fluid (ISF) for the monitoring of clinical biomarkers is a greatly appealing area of research. The identification of molecular biomarkers in biological fluids has been accelerated with -omics analyses but remains limited in ISF because of its time-consuming and complex extraction process. Here, the generation of microneedle (MN) patches made of superabsorbent acrylate-based hydrogels for the rapid sampling of dermal ISF is described to explore its proteome. In depth, iterative optimization allows the identification of novel acrylate-based compositions with the required chemical, mechanical, and biocompatibility properties allowing proteomic analysis of the extracted ISF for the first time after sampling with swelling MNs. The generated MN arrays show no cytotoxic effect, successfully cross the stratum corneum, and can collect up to 6 µL of dermal ISF in 10 min in vivo. Proteomics lead to the detection of 176 clinically relevant biomarkers in the collected samples validating the use of ISF as a relevant bodily fluid for disease monitoring and diagnostic. Importantly, it is discovered that extraction fingerprint is strongly dependent on the MNs chemistry, and thus specific biomarkers could be selectively extracted by tuning the composition of the patch, making the system versatile and specific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号