首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
化学工业   5篇
能源动力   4篇
一般工业技术   1篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2012年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
排序方式: 共有10条查询结果,搜索用时 500 毫秒
1
1.
In this work, a new metal–organic framework (MOF) was synthesized by using a large organic ligand 1,3,5-tris[4′-carboxy(1,1′-biphenyl)-4-yl] benzene (abbreviated as TCBPB) and aluminum as the metal that forms the secondary building unit (SBU) by solvothermal method. The MOF, named as Al-TCBPB, was characterized with pore textural properties, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Raman and FT-IR spectroscopy. Hydrogen adsorption was measured volumetrically at ambient pressure and temperatures of 77, 88 and 298 K and at high pressure (up to 9 MPa) for temperatures 77 and 298 K. Pore textural properties revealed a high BET surface area of 2311 m2/g, narrow bimodal pore widths of 11.8 Å and 20 Å and a total pore volume of 0.80 cm3/g. PXRD identified the crystal structure as monoclinic with space group c2/m. This MOF adsorbs 1.53 and 0.83 wt.% of hydrogen at 77 and 88 K, respectively, and pressures up to ambient conditions. At higher pressure of 9 MPa, it demonstrated an excess adsorption of 4.8 and 1.4 wt.% at 77 and 298 K, respectively; these high-pressure data fit well with modified Dubinin–Astakov (D–A) analytical model. The heat of adsorption values of Al-TCBPB vary between 5.9 and 4.9 kJ/mol for the hydrogen adsorption loading of 0.1–0.8 wt.% and decreases monotonically to approximately 2 kJ/mol when the adsorption loading becomes 4.8 wt%.  相似文献   
2.
Quasi-elastic neutron scattering was used for characterization of dynamics of molecular hydrogen confined in narrow nanopores of two activated carbon materials: a carbon derived from polyfurfuryl alcohol and an ultramicroporous carbon. Fast, but incomplete ortho–para conversion was observed at 10 K, suggesting that scattering originates from the fraction of unconverted ortho isomer which is rotation-hindered because of confinement in nanopores. Hydrogen molecules entrapped in narrow nanopores (<7 Å) were immobile below 22–25 K. Mobility increased rapidly with temperature above this threshold, which is higher than the melting point of bulk hydrogen (13.9 K). Diffusion obeyed fixed-jump length mechanism, indistinguishable between 2D and 3D processes. Thermal activation of diffusion was characterized between ~22 and 37 K, and structure-dependent differences were found between the two carbons. Activation energy of diffusion was higher than that of bulk solid hydrogen. Classical notions of liquid and solid do not longer apply for H2 confined in narrow nanopores.  相似文献   
3.
Mixed MOF crystals with morphology similar to that of pure MOF-5 and pure MOF-177 were synthesized using two organic solvents: dimethylformamide (DMF) and diethylformamide (DEF). The mixed crystals were characterized with XRD, SEM and TGA for their physical properties and also evaluated for their hydrogen adsorption properties. The XRD and SEM results suggest that the mixed crystals are different from pure MOF-5 and pure MOF-177. The DMF-derived mixed MOF crystals have a slightly higher specific surface area, smaller pore diameter and greater pore volume than those of the DEF-derived crystals, and seem to be a better adsorbent than the DEF-derived crystals, which was confirmed by the higher hydrogen and nitrogen adsorption capacities on the DMF-derived crystals. The hydrogen adsorption capacities on the mixed MOF crystals are lower than those of pure MOF-5 and MOF-177. It was also observed that the hydrogen diffusion time constant increases with hydrogen pressure, and the heat of hydrogen adsorption decreases with adsorbed hydrogen amount on both mixed crystals.  相似文献   
4.
Nonalcoholic fatty liver disease (NAFLD), which is characterized by excess accumulation of triglyceride in hepatocytes, is the major cause of chronic liver disease worldwide and no approved drug is available. The mechanistic target of rapamycin (mTOR) complexes has been implicated in promoting lipogenesis and fat accumulation in the liver, and thus, serve as attractive drug targets. The generation of non‐ or low cytotoxic mTOR inhibitors is required because existing cytotoxic mTOR inhibitors are not useful for NAFLD therapy. New compounds based on the privileged adenosine triphosphate (ATP) site binder quinoline scaffold conjugated to glucose and galactosamine derivatives, which have significantly low cytotoxicity, but strong mTORC1 inhibitory activity at low micromolar concentrations, have been synthesized. These compounds also effectively inhibit the rate of lipogenesis and lipid accumulation in cultured hepatocytes. This is the first report of glycomimetic–quinoline derivatives that reduce lipid load in hepatocytes.  相似文献   
5.
Transfer RNAs (tRNAs) are fundamental molecules in cellular translation. In this study we have highlighted a fluorescence-based perceptive approach for tRNAs by using a quinoxaline small molecule. We have synthesised a water-soluble fluorescent pyrimido-quinoxaline-fused heterocycle containing a mandatory piperazine tail ( DS1 ) with a large Stokes shift (∼160 nm). The interaction between DS1 and tRNA results in significant fluorescence enhancement of the molecule with Kd∼5 μM and multiple binding sites. Our work reveals that the DS1 binding site overlaps with the specific Mg2+ ion binding site in the D loop of tRNA. As a proof-of-concept, the molecule inhibited Pb2+-induced cleavage of yeast tRNAPhe in the D loop. In competitive binding assays, the fluorescence of DS1 -tRNA complex is quenched by a known tRNA-binder, tobramycin. This indicates the displacement of DS1 and, indeed, a substantiation of specific binding at the site of tertiary interaction in the central region of tRNA. The ability of compound DS1 to bind tRNA with a higher affinity compared to DNA and single-stranded RNA offers a promising approach to developing tRNA-based biomarker diagnostics in the future.  相似文献   
6.
Metal-organic frameworks (MOFs), especially MOF-5, are believed to be promising new porous materials for hydrogen adsorption. A comparative study of material synthesis, characterization and hydrogen adsorption was performed to examine the effects of different synthesis conditions on crystal structure, pore textural property and hydrogen adsorption performance of MOF-5 materials. Three MOF-5 samples synthesized with dimethyl formamide (DFM) as solvent and slightly different procedures have shown similar phase structure and chemical composition, diverse crystal structures, varying pore textural properties and different hydrogen adsorption performance. It was established from the experimental results that higher order of crystallinity in the MOF-5 materials generates better adsorbents with larger crystal size, higher specific surface area, uniform pore size distribution (PSD), larger hydrogen adsorption capacity and faster hydrogen diffusion rate in MOF-5 adsorbents. The best MOF-5 sample synthesized in this work (MOF-5(γ)) has a Langmuir specific surface area of 1157 m2/g; it can adsorb 0.5 wt.% of hydrogen at 77 K and 800 mmHg; and results in hydrogen diffusivity inside MOF-5 crystal of 2.3 × 10−9 cm2/s. The density functional theory reasonably predicts the presence of mesopores and macropores in all three MOF-5 samples synthesized in this work.  相似文献   
7.
Ordered mesoporous carbons were synthesized with a soft-template approach and modified with a water and tetrahydrofuran mixture having a H2O/THF molar ratio of 17:1 as potential adsorbent media for hydrogen storage. Hydrogen adsorption equilibrium on the carbon adsorbents was measured gravimetrically at 270 K and hydrogen pressures up to 163 bar. Enhanced hydrogen adsorption was observed on the carbon adsorbents doped with 0.5 wt.% and 0.75 wt.% of H2O/THF due to the combined effects of hydrogen adsorption on the carbon surface and formation of a binary H2–H2O–THF clathrate. Hydrogen adsorption capacities on the carbon adsorbents doped with 0.5 wt.%, 0.75 wt.% of H2O/THF, and the pure carbon at 270 K and 163 bar are 0.747 wt.%, 0.646 wt.% and 0.585 wt.%, respectively. The hydrogen adsorption isotherms on all the doped carbon adsorbents are of typical Type III and can be well correlated by the Freundlich equation. A desorption hysteresis loop was observed on the carbon adsorbents doped with 0.5 wt.% and 0.75 wt.% of H2O/THF, which was probably caused by the pore size difference during the adsorption and desorption steps.  相似文献   
8.
Dipendu Saha 《Carbon》2010,48(12):3471-6786
C60 buckyball molecules were partially truncated by a controlled oxidation at 400 °C and 2 bar oxygen pressure to create unique pore textures suitable for hydrogen adsorption. Pore textural analysis and density measurement confirmed the success of cage-opening and the creation of pore structures accessible to gas molecules. The specific surface area of the C60 sample were increased from below detection to a measurable value (BET: 85 m2/g). Raman spectral study showed that the three main bands of C60, Hg(1), Ag(1) and Ag(2) remained and significant defects were created after the C60 fullerenes were partially oxidized. XRD and SEM measurements suggested that the C60 fullerenes lost their crystallinity and the crystal surfaces were etched after the oxidation step. Hydrogen adsorption on the C60 fullerenes were measured at three temperatures (77, 143 and 228 K) and hydrogen pressures up to 150 bar. Hydrogen adsorption capacity on C60 fullerenes at 77 K at 120 bar was more than tripled (from 3.9 to 13 wt.%) after the C60 fullerenes were partially oxidized. The average heat of adsorption of hydrogen on the partially oxidized C60 fullerene molecules (2.38 kJ/mol) is within the range of the reported values of heat of adsorption on other porous adsorbents.  相似文献   
9.
Metal–organic framework (MOF-177) was synthesized, characterized and evaluated for hydrogen adsorption as a potential adsorbent for hydrogen storage. The hydrogen adsorption equilibrium and kinetic data were measured in a volumetric unit at low pressure and in a magnetic suspension balance at hydrogen pressure up to 100 bar. The MOF-177 adsorbent was characterized with nitrogen adsorption for pore textural properties, scanning electron microscopy for morphology and particle size, and X-ray powder diffraction for phase structure. The MOF-177 synthesized in this work was found to have a uniform pore size distribution with median pore size of 12.7 Å, a higher specific surface area (Langmuir: 5994 m2/g; BET: 3275 m2/g), and a higher hydrogen adsorption capacity (11.0 wt.% excess adsorption, 19.67 wt.% absolute adsorption) than previously reported values on MOF-177. Freundlich equation fits well the hydrogen adsorption isotherms at low and high pressures. Diffusivity and isosteric heat of hydrogen adsorption were estimated from the hydrogen adsorption kinetics and equilibrium data measured in this work.  相似文献   
10.
Clean Technologies and Environmental Policy - Life cycle assessment (LCA) of novel fired clay bricks with synergistic co-valorization of nickel-chrome plating sludge (NCPS) and fly ash (FA) is...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号