首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
一般工业技术   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
A technique for controlled burning of rice straw is presented. It relies on well-designed rice straw pellets to be burned in fluidized bed. The developed pellets have high burning rate, no fly ashes emissions and minimum bed fouling. The pellets are manufactured from ground rice straw in a disc pelletizer with the aid of bonding and suitable additive materials. The pellets are tested under controlled conditions in a test rig, which represents a single pellet fluidized bed. It is equipped with a nitrogen gun to eject the pellet and freeze the reaction at any predetermined time during combustion. The ejected pellets are weighed as well as elementary analyzed for both carbon and hydrogen, to calculate the burning rate as well as the combustion efficiency, respectively. The effect of several parameters has been evaluated including straw particle size, pellet size, type and concentration of bonding material as well as anti-sintering additives. Also, the pellets’ mechanical characteristics have been evaluated. It has been found that char combustion phase represents the controlling phase of the pellet combustion. The burning rate is higher as the void fraction of the pellet is higher. Starch showed better combustion and mechanical characteristics out of the five tested bonding materials. Adding kaolin to the pellets results in improving the sintering characteristics of the pellets. The experimental results were compared with two combustion models: the oxygen diffusion controlled and the kinetic-diffusion models. It has been found that oxygen diffusion controlled model more accurately simulates the combustion of the pellet during its char combustion phase. The model has been used to evaluate the effect of some operational parameters on the pellet combustion characteristics such as bed temperature, gas flow and oxygen concentration.  相似文献   
2.
The objective of this paper is to develop a systematic methodology for mass integration in drain systems and watersheds. Mass integration is a holistic approach to the tracking, transformation, and allocation of species and streams. The watershed and drain system is first discretized into reaches. The MFA model developed in part I of this work (Simulation and Application to Ammonium Management in Bahr El-Baqar Drain System) is used to describe the environmental phenomena that affect the fate and transport of targeted species and the operators that characterize the system inputs and outputs as they relate to the surroundings. Next, we develop an integration framework which encompasses sources, sinks, and interception technologies to aid in the development for nitrogen-management strategies. The simulation model was transformed into a synthesis model by introducing optimization variables and including models for the potential management strategies. The problem of minimizing negative environmental impact subject to technical, social, economic, and regulatory constraints was posed as a nonlinear optimization program whose solution identified and synthesized the most effective solution strategies. These mathematical models and management strategies were coded into a computer-aided tool using LINGO programming platform. The program can be readily modified to address a variety of cases. Tradeoffs and sensitivity analysis were established using the devised model. The devised framework was applied to an Egyptian drain system (Bahr El-Baqar) along with the outfall to Lake Manzala. The results of the case study provide solution strategies for nitrogen management along with their technical, economic, and environmental implications.  相似文献   
3.
This paper is aimed at developing a systematic and generally applicable methodology for material flow analysis in drainage systems and watersheds. In particular, this research has focused on developing a mathematical framework and application for the management of nitrogenous species (primarily ammonium ions). Nitrogen compounds are among the most important species contributing to ecological cycles. Indeed, the environmental and biological aspects of water systems and their surrounding systems are highly impacted by nitrogen compounds as they contribute to the quality, nutrition, and toxicity of these systems. A material flow model was developed to deal primarily with the water phase while including pertinent information on the solid and air phases as they interface with the water medium. Both spatial and discrete temporal dimensions were included to account for nitrogen flow and transformation. The model includes the various environmental phenomena that influence the fate and transport of targeted species (e.g., volatilization, precipitation, sedimentation, uptake by biota, adsorption, chemical and biochemical reactions, etc.). Furthermore, the model includes material flow analysis operators (or transfer functions) that characterize the system inputs and outputs as they relate to the surroundings. The aforementioned material flow analysis tools were combined in a computer-aided modeling platform to provide a complete material flow analysis and yield useful insights on the transport and fate of targeted species. The simulation results shed light on the system performance. Actual data for an Egyptian drainage system (Bahr El-Baqar) along with the outfall to Lake Manzala were used to illustrate the usefulness and applicability of the developed model. Comparison with the measured data confirmed the validity and fidelity of the model.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号