首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43969篇
  免费   3834篇
  国内免费   2136篇
电工技术   2587篇
技术理论   5篇
综合类   3521篇
化学工业   7217篇
金属工艺   2231篇
机械仪表   2568篇
建筑科学   3530篇
矿业工程   1033篇
能源动力   1142篇
轻工业   4776篇
水利工程   911篇
石油天然气   2017篇
武器工业   401篇
无线电   4748篇
一般工业技术   4581篇
冶金工业   2181篇
原子能技术   547篇
自动化技术   5943篇
  2024年   207篇
  2023年   681篇
  2022年   1252篇
  2021年   1710篇
  2020年   1294篇
  2019年   1040篇
  2018年   1225篇
  2017年   1348篇
  2016年   1240篇
  2015年   1750篇
  2014年   2193篇
  2013年   2664篇
  2012年   3073篇
  2011年   3343篇
  2010年   2959篇
  2009年   2884篇
  2008年   2921篇
  2007年   2653篇
  2006年   2535篇
  2005年   2169篇
  2004年   1503篇
  2003年   1157篇
  2002年   1118篇
  2001年   931篇
  2000年   875篇
  1999年   914篇
  1998年   867篇
  1997年   684篇
  1996年   583篇
  1995年   507篇
  1994年   374篇
  1993年   267篇
  1992年   226篇
  1991年   179篇
  1990年   122篇
  1989年   114篇
  1988年   96篇
  1987年   53篇
  1986年   62篇
  1985年   33篇
  1984年   23篇
  1983年   13篇
  1982年   14篇
  1981年   16篇
  1980年   20篇
  1979年   9篇
  1977年   4篇
  1976年   16篇
  1975年   5篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Neoantigen vaccines and adoptive dendritic cell (DC) transfer are major clinical approaches to initiate personalized immunity in cancer patients. However, the immunization efficacy is largely limited by the in vivo trajectory including neoantigens’ access to resident DCs and DCs’ access to lymph nodes (LNs). Herein, an innovative strategy is proposed to improve personalized immunization through neoantigen-loaded nanovaccines synergized with adoptive DC transfer. It is found that it enables selective delivery of neoantigens to resident DCs and macrophages by coating cancer cell membranes onto neoantigen-loaded nanoparticles. In addition, the nanovaccines promote the secretion of chemokine C-C motif ligand 2 (CCL2), CCL3, and C-X-C motif ligand 10 from macrophages, thus potentiating the access of transferred DCs to LNs. This immunization strategy enables coordinated delivery of identified neoantigens and autologous tumor lysate-derived undefined antigens, leading to initiation of antitumor T cell immunity in a personalized manner. It significantly inhibits tumor growth in prophylactic and established mouse tumor models. The findings provide a new vision for potentiating adoptive cell transfer by nanovaccines, which may open the door to a transformative possibility for improving personalized immunization.  相似文献   
2.
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy.  相似文献   
3.
4.
Malondialdehyde (MDA) was selected to represent a secondary by-product of lipid peroxidation during rice ageing. This study aimed to investigate the effects of MDA modification on the structural characteristics of rice protein. The results showed that as MDA concentration increased, rice protein carbonyl and disulphide groups increased, but sulphydryl content decreased. The blue shift of maximum fluorescence peak, the decrease of rice protein intrinsic fluorescence intensity and the reduction of surface hydrophobicity indicated the formation of protein aggregates caused by MDA oxidative modification. The results of molecular weight distribution and particle size distribution showed that MDA modification resulted in the formation of soluble protein aggregates, and the decrease of rice protein solubility indicated that insoluble protein aggregates were formed. Results of protein electrophoresis showed that MDA modification contributed to rice protein aggregation via non-disulphide covalent bonds. The results showed that rice protein gradually aggregated with increasing MDA concentration.  相似文献   
5.
Large‐scale production of hydrogen from water‐alkali electrolyzers is impeded by the sluggish kinetics of hydrogen evolution reaction (HER) electrocatalysts. The hybridization of an acid‐active HER catalyst with a cocatalyst at the nanoscale helps boost HER kinetics in alkaline media. Here, it is demonstrated that 1T–MoS2 nanosheet edges (instead of basal planes) decorated by metal hydroxides form highly active edge 1T‐MoS 2 / edge Ni ( OH ) 2 heterostructures, which significantly enhance HER performance in alkaline media. Featured with rich edge 1T‐MoS 2 / edge Ni ( OH ) 2 sites, the fabricated 1T–MoS2 QS/Ni(OH)2 hybrid (quantum sized 1T–MoS2 sheets decorated with Ni(OH)2 via interface engineering) only requires overpotentials of 57 and 112 mV to drive HER current densities of 10 and 100 mA cm?2, respectively, and has a low Tafel slope of 30 mV dec?1 in 1 m KOH. So far, this is the best performance for MoS2‐based electrocatalysts and the 1T–MoS2 QS/Ni(OH)2 hybrid is among the best‐performing non‐Pt alkaline HER electrocatalysts known. The HER process is durable for 100 h at current densities up to 500 mA cm?2. This work not only provides an active, cost‐effective, and robust alkaline HER electrocatalyst, but also demonstrates a design strategy for preparing high‐performance catalysts based on edge‐rich 2D quantum sheets for other catalytic reactions.  相似文献   
6.
7.
Rapid synthesis of silver nanowires(Ag NWs) with high quality and a broad processing window is challenging because of the low selectivity of the formation of multiply twinned particles at the nucleation stage for subsequent Ag NWs growth.Herein we report a systematic study of the water-involved heterogeneous nucleation of Ag NWs with high rate(less than 20 min) in a simple and scalable preparation method.Using glycerol as a reducing agent and a solvent with a high boiling point,the reaction is rapidly heated to 210 ℃ in air to synthesize Ag NWs with a very high yield in gram level.It is noted that the addition of a small dose of water plays a key role for obtaining highly pure Ag NWs in high yield,and the optimal water/glycerol ratio is0.25%.After investigating a series of forming factors including reaction temperature and dose of catalysts,the formation kinetics and mechanism of the Ag NWs are proposed.Compared to other preparation methods,our strategy is simple and reproducible.These Ag NWs show a strong Raman enhancement effect for organic molecules on their surface.  相似文献   
8.
9.
This work intends to develop an online experimental system for screening of deoxynivalenol (DON) contamination in whole wheat meals by visible/near-infrared (Vis/NIR) spectroscopy and computer vision coupling technology. Spectral and image information of samples with various DON levels was collected at speed of 0.15 m s−1 on a conveyor belt. The two-type data were then integrated and subjected to chemometric analysis. Discriminant analysis showed that samples could be classified by setting 1000 μg kg−1 as the cut-off value. The best correct classified rate obtained in prediction was 93.55% based on fusion of spectral and image features, with reduced prediction uncertainty as compared to single feature. However, quantification of DON by quantitative analysis was not successful due to poor model performance. These results indicate that, although not accurate enough to provide conclusive result, this coupling technology could be adopted for rapid screening of DON contamination in cereals and feeds during processing.  相似文献   
10.
Electromagnetic signal emitted by satellite communication (satcom) transmitters are used to identify specific individual uplink satcom terminals sharing the common transponder in real environment, which is known as specific emitter identification (SEI) that allows for early indications and warning (I&W) of the targets carrying satcom furnishment and furthermore the real time electromagnetic situation awareness in military operations. In this paper, the authors are the first to propose the identification of specific transmitters of satcom by using probabilistic neural networks (PNN) to reach the goal of target recognition. We have been devoted to the examination by exploring the feasibility of utilizing the Hilbert transform to signal preprocessing, applying the discrete wavelet transform to feature extraction, and employing the PNN to perform the classification of stationary signals. There are a total of 1000 sampling time series with binary phase shift keying (BPSK) modulation originated by five types of satcom transmitters in the test. The established PNNs classifier implements the data testing and finally yields satisfactory accuracy at 8 dB(±1 dB) carrier to noise ratio, which indicates the feasibility of our method, and even the keen insight of its application in military.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号