首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   3篇
机械仪表   2篇
轻工业   2篇
无线电   1篇
一般工业技术   5篇
自动化技术   1篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
One of the basic challenges in content‐centric networking (CCN) is how to optimize the overall energy consumption of content transmission and caching. Furthermore, designing an appropriate caching policy that considers both energy consumption and quality of service (QoS) is a major goal in green CCN. In this paper, the problem of minimizing the total CCN energy consumption while being aware of the end‐to‐end delay is formulated as an integer linear programming model. Since it is an Non‐deterministic Polynomial‐time (NP)‐hard problem, the Markov approximation method for an energy‐delay aware caching strategy (MAEDC) is proposed through a log‐sum‐exp function to find a near‐optimal solution in a distributed manner. The numerical results show that the MAEDC achieves near‐optimal energy consumption with better delay profile compared with the optimal solution. Moreover, due to the possibility of distributed and parallel processing, the proposed method is proper for the online situation where the delay is a crucial issue.  相似文献   
2.
Abstract

A simple and versatile touchspinning method is demonstrated for the fabrication of core-sheath nanofibrous piezoelectric yarns with a single filament electroconductive core. The polyvinylidene fluoride (PVDF) piezoelectric nanofibers are fabricated in a continuous spinning process with relatively controlled structure, orientation, and dimensions to form a sheath layer. The PVDF core-sheath nanoyarn is assembled into a piezoelectric nanogenerator (PNG) capable to convert mechanical energy of body motion into electricity. It was demonstrated that an electrical potential difference of 0.72?V can be generated under compression of 0.33?MPa for a single 3-cm long yarn. The touchspun nanoyarn fabrication method has great potential for the fabrication of functional smart textile products.  相似文献   
3.
4.
Internet infrastructure is going to be re-designed as a core network layer, shifting from hosts to contents. To this end, content centric networking (CCN) as one of the most effective architectures has been proposed with significant features of in-network caching to open new possibilities for energy efficiency in content dissemination. However in energy-efficient CCN, less popular contents are cached near the origin server, and therefore in delay sensitive applications with less popularity, it leads to dropping delayed chunks, increasing energy waste, and degrading the quality of service (QoS). In the present paper, the energy consumption in CCN while being aware of QoS consideration in terms of imposed delay is minimized. The minimization is performed through integer linear programming by considering most of the energy consuming components. However, since this problem is NP-hard, a quantized Hopfield neural network with an augmented Lagrange multiplier method (MEDCCN-QHN) is proposed to derive the solution. The numerical results show that the MEDCCN-QHN achieves to better delay profile compared to the optimal energy-efficient algorithm, and near-optimal energy consumption. Moreover, the method is fast due to its parallel execution capability.  相似文献   
5.
Spermatogenesis is a highly complicated process which initiated by spermatogonial stem cells (SSCs). SSCs are the only cell type that can restore fertility in infertile recipient after SSCs transplantation. SSCs damage during cancer diagnosis and therapy and their depletion may be cause of male infertility in cancer survivors. In this review, used experimental methods regarding SSCs and testis tissue cryopreservation have been reviewed with a special focus on animal models and human which have generated the majority of data about SSCs and the cryopreservation process. Microsc. Res. Tech. 79:122–129, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   
6.
7.
8.
As one of the induced pluripotent stem cells (iPSCs) methods, spermatogonial stem cells (SSCS) extract is considered as new approach in stem cell therapy of infertility. 5‐aza‐2′‐deoxycytidine (5‐aza‐dC) inhibits methyltransferase enzyme, and induces gene reprogramming; herein, the effects of SSCS extract incubation in 5‐aza‐dC‐treated bone marrow mesenchymal stem cells (BMMSCs) has been surveyed. BMMSCs were isolated from femurs of three to four weeks old male NMRI mice, and the cells at passage three were treated with 2 µM 5‐aza‐dC for 72 hours. SSCs were isolated, cultured, and harvested at passage three to collect SSCS extract; BMMSCs were then incubated with SSCS extract in the three time periods: 72 hours, one week and two weeks. There were five groups: control, sham, extract, 5‐aza‐dC and extract‐5‐aza‐dC. After one week of incubation, flow cytometry and real‐time polymerase chain reaction (PCR) exhibited high levels of expression for β1‐ and α6‐integrins and promyelocytic leukaemia zinc finger (PLZF) in extract and extract‐5‐aza‐dC groups (P < 0.05 vs. control and 5‐aza‐dC), and cells in these two groups had two forms of morphology, round and fusiform, similar to germ‐like cells. 5‐aza‐dC had no significant effects during the three time periods of evaluation. These data disclose the effectiveness of SSCs extract incubation in transdifferentiation of BMMSCs into germ‐like cells; this strategy could introduce a new approach for treatment of male infertility in clinic. Microsc. Res. Tech. 79:365–373, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
9.
Chondroitin (Chn) sulphate composed of N‐acetyl galactoseamine units was chosen to target doxorubicin (DOX) to asialoglycoprotein receptors (ASGPRs) overexpressed in HepG2 cells of hepatocellular carcinoma (HCC). Two different ways of targeting the drug to the receptors were compared with each other; (i) by polyelectrolyte complex formation of DOX and Chn (DC), (ii) by loading the drug in gelatin nanoparticles (NPs) and then coating them by Chn. The characteristics of DC complexes were determined by Fourier transform infrared spectroscopy, differential scanning calorimetry and CHN analysis. The complexes and Chn coated NPs were characterised for their particles size, zeta potential, drug loading and release efficiency. The morphology of NPs was studied by transmission electron microscopy. The cytotoxicity of DC complex and Chn coated NPs were compared on HepG2 cells by MTT assay. The results showed that the cytotoxicity of both Chn coated gelatin NPs and DC complexes were significantly increased in comparison with free DOX. However, the presence of Chn did not have significant effect on the cytotoxicity of DOX loaded NPs. It was concluded that polyelectrolyte complex of DC could successfully target the drug to the hepatic ASGPRs and may be a simple promising way for targeted drug delivery in HCC.Inspec keywords: drug delivery systems, drugs, polymer electrolytes, electrokinetic effects, nanoparticles, particle size, cellular biophysics, nanocomposites, nanofabrication, molecular biophysics, cancer, gelatin, coatings, Fourier transform infrared spectra, differential scanning calorimetry, filled polymers, transmission electron microscopy, toxicology, nanomedicine, biomedical materialsOther keywords: chondroitin‐doxorubicin nanoparticulate polyelectrolyte complex, HepG2 cells, N‐acetyl galactoseamine units, chondroitin sulphate, asialoglycoprotein receptors, hepatocellular carcinoma, drug targeted delivery, receptors, polyelectrolyte complex formation, gelatin nanoparticles, DC complexes, Fourier transform infrared spectroscopy, differential scanning calorimetry, CHN analysis, Chn coated NPs, particle size, zeta potential, drug loading, drug release efficiency, morphology, transmission electron microscopy, cytotoxicity, MTT assay, hepatic ASGPRs  相似文献   
10.
This work introduces a gravity fiber drawing (GFD) method of making single filament nanofibers from polymer solutions and precise alignment of the fibers in 3D scaffolds. This method is advantageous for nanofiber 3D alignment in contrast to other known methods. GFD provides a technology for the fabrication of freestanding filament nanofibers of well‐controlled diameter, draw ratio, and 3D organization with controllable spacing and angular orientation between nanofibers. The GFD method is capable of fabricating complex 3D scaffolds combining fibers with different diameters, chemical compositions, mechanical properties, angular orientations, and multilayer structures in the same construct. The scaffold porosity can be as high as 99% to secure transport of nutrients and space for cell infiltration and differentiation in tissue engineering and 3D cell culture applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号