首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5826篇
  免费   330篇
  国内免费   10篇
电工技术   78篇
综合类   3篇
化学工业   1631篇
金属工艺   77篇
机械仪表   162篇
建筑科学   261篇
矿业工程   9篇
能源动力   242篇
轻工业   922篇
水利工程   54篇
石油天然气   48篇
无线电   378篇
一般工业技术   871篇
冶金工业   399篇
原子能技术   32篇
自动化技术   999篇
  2024年   13篇
  2023年   55篇
  2022年   171篇
  2021年   262篇
  2020年   162篇
  2019年   211篇
  2018年   203篇
  2017年   196篇
  2016年   267篇
  2015年   129篇
  2014年   257篇
  2013年   457篇
  2012年   379篇
  2011年   472篇
  2010年   345篇
  2009年   373篇
  2008年   317篇
  2007年   264篇
  2006年   178篇
  2005年   145篇
  2004年   140篇
  2003年   106篇
  2002年   130篇
  2001年   78篇
  2000年   59篇
  1999年   70篇
  1998年   132篇
  1997年   112篇
  1996年   72篇
  1995年   72篇
  1994年   43篇
  1993年   39篇
  1992年   38篇
  1991年   23篇
  1990年   25篇
  1989年   23篇
  1988年   21篇
  1987年   11篇
  1986年   7篇
  1985年   14篇
  1984年   11篇
  1983年   11篇
  1982年   5篇
  1981年   10篇
  1980年   11篇
  1979年   7篇
  1978年   5篇
  1977年   7篇
  1976年   13篇
  1975年   5篇
排序方式: 共有6166条查询结果,搜索用时 15 毫秒
1.

In this work we analysed the stepwise charging technique to find the limits from which it is beneficial in terms of load capacitance and charge–discharge frequency. We included in the analysis practical limitations such as the consumption of auxiliary logic needed to implement the technique and the minimum size of auxiliary switches imposed by the technology. We proposed an ultra-low-power logic block to push these limits and to obtain benefits from this technique in small capacitances. Finally, we proposed to use a stepwise driver in the driving of the gate capacitance of power switches in switched-capacitor (SC) DC–DC converters. We designed and manufactured, in a 130 nm process, a SC DC–DC converter and measured a 29% energy reduction in the gate-drive losses of the converter. This accounts for an improvement of 4% (from 69 to 73%) in the overall converter efficiency.

  相似文献   
2.
With liquefied natural gas becoming increasingly prevalent as a flexible source of energy, the design and optimization of industrial refrigeration cycles becomes even more important. In this article, we propose an integrated surrogate modeling and optimization framework to model and optimize the complex CryoMan Cascade refrigeration cycle. Dimensionality reduction techniques are used to reduce the large number of process decision variables which are subsequently supplied to an array of Gaussian processes, modeling both the process objective as well as feasibility constraints. Through iterative resampling of the rigorous model, this data-driven surrogate is continually refined and subsequently optimized. This approach was not only able to improve on the results of directly optimizing the process flow sheet but also located the set of optimal operating conditions in only 2 h as opposed to the original 3 weeks, facilitating its use in the operational optimization and enhanced process design of large-scale industrial chemical systems.  相似文献   
3.
The corrosion mechanisms of T24, T92, VM12, and AISI 304 steels are studied under the influence of NaCl–KCl, NaCl–Na2SO4, and KCl–K2SO4 salt mixtures in a dry air atmosphere at 650°C for 15 days. NaCl–KCl was the most aggressive deposit and AISI 304 stainless steel exhibited the highest corrosion resistance. There was no relation between the Cr content of the ferritic steels and their corrosion resistance in NaCl–KCl. In contrast, the resistance of high-Cr steels was better when exposed to NaCl–Na2SO4 and KCl–K2SO4. The high-Cr and the low-Cr steels were more susceptible to NaCl–Na2SO4 and to KCl–K2SO4, respectively.  相似文献   
4.
Debittered trub (brewing waste) is an important source of protein source (70.26%). Trub and whey protein were used for 5% protein enrichment of ice cream frozen by liquid nitrogen. Three formulations were elaborated: ice cream standard (ICS), ice cream with whey protein (ICW) and ice cream with trub (ICT). Chemical composition, rheological properties, texture, overrun, melting rate, scanning electron microscopy and a sensorial test were performed. Results showed that ICT presented a higher viscosity, obtained on the upward curve up to 6.76 Pa s−1, consistency index (22.96 (Pa s−1)n), hysteresis area (140.40 mPa s−1) and hardness (31113.33 g) but a lower melting rate (0.38 g min−1), overrun (13.92%) and sensorial acceptability than the other formulations. The addition of trub debittered for protein enrichment improved ice cream properties and demonstrated that it could be used as a food ingredient.  相似文献   
5.
6.
The enhancement of the thermal conductivity, keeping the electrical insulation, of epoxy thermosets through the addition of pristine and oxidized carbon nanotubes (CNTs) and microplatelets of boron nitride (BN) was studied. Two different epoxy resins were selected: a cycloaliphatic (ECC) epoxy resin and a glycidylic (DGEBA) epoxy resin. The characteristics of the composites prepared were evaluated and compared in terms of thermal, thermomechanical, rheological and electrical properties. Two different dispersion methods were used in the addition of pristine and oxidized CNTs depending on the type of epoxy resin used. Slight changes in the kinetics of the curing reaction were observed in the presence of the fillers. The addition of pristine CNTs led to a greater enhancement of the mechanical properties of the ECC composite whereas the oxidized CNTs presented a greater effect in the DGEBA matrix. The addition of CNTs alone led to a marked decrease of the electrical resistivity of the composites. Nevertheless, in the presence of BN, which is an electrically insulating material, it was possible to increase the proportion of pristine CNTs to 0.25 wt% in the formulation without deterioration of the electrical resistivity. A small but significant synergic effect was determined when both fillers were added together. Improvements of about 750% and 400% in thermal conductivity were obtained in comparison to the neat epoxy matrix for the ECC and DGEBA composites, respectively. © 2019 Society of Chemical Industry  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号