首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   2篇
电工技术   1篇
综合类   6篇
化学工业   6篇
金属工艺   3篇
能源动力   4篇
无线电   5篇
一般工业技术   4篇
冶金工业   8篇
原子能技术   1篇
自动化技术   1篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   7篇
  2015年   1篇
  2013年   3篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   4篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1977年   1篇
  1976年   3篇
排序方式: 共有39条查询结果,搜索用时 9 毫秒
1.
In previous works we demonstrated an inverse correlation between plasma Coenzyme Q10 (CoQ10) and thyroid hormones; in fact, CoQ10 levels in hyperthyroid patients were found among the lowest detected in human diseases. On the contrary, CoQ10 is elevated in hypothyroid subjects, also in subclinical conditions, suggesting the usefulness of this index in assessing metabolic status in thyroid disorders. A Low-T3 syndrome is a condition observed in several chronic diseases: it is considered an adaptation mechanism, where there is a reduction in pro-hormone T4 conversion. Low T3-Syndrome is not usually considered to be corrected with replacement therapy. We review the role of thyroid hormones in regulation of antioxidant systems, also presenting data on total antioxidant capacity and Coenzyme Q10. Published studies suggest that oxidative stress could be involved in the clinical course of different heart diseases; our data could support the rationale of replacement therapy in low-T3 conditions.  相似文献   
2.
Longwall gateroad entries are subject to changing horizontal and vertical stress induced by redistribution of loads around the extracted panel. The stress changes can result in significant deformation of the entries that may include roof sag, rib dilation, and floor heave. Mine operators install different types of supports to control the ground response and maintain safe access and ventilation of the longwall face. This paper describes recent research aimed at quantifying the effect of longwall-induced stress changes on ground stability and using the information to assess support alternatives. The research included monitoring of ground and support interaction at several operating longwall mines in the U.S., analysis and calibration of numerical models that adequately represent the bedded rock mass, and observation of the support systems and their response to changes in stress. The models were then used to investigate the impact of geology and stress conditions on ground deformation and support response for various depths of cover and geologic scenarios. The research results were summarized in two regression equations that can be used to estimate the likely roof deformation and height of roof yield due to longwall-induced stress changes. This information is then used to assess the ability of support systems to maintain the stability of the roof. The application of the method is demonstrated with a retrospective analysis of the support performance at an operating longwall mine that experienced a headgate roof fall. The method is shown to produce realistic estimates of gateroad entry stability and support performance, allowing alternative support systems to be assessed during the design and planning stage of longwall operations.  相似文献   
3.
Coal bumps have long been a safety hazard in coal mines, and even after decades of research, the exact mechanics that cause coal bumps are still not well understood. Therefore, coal bumps are still difficult to predict and control. The LaModel program has a long history of being used to effectively analyze displacements and stresses in coal mines, and with the recent addition of energy release and local mine stiffness calculations, the LaModel program now has greatly increased capabilities for evaluating coal bump potential. This paper presents three recent case histories where coal stress, pillar safety factor, energy release rate and local mine stiffness calculations in LaModel were used to evaluate the pillar plan and cut sequencing that were associated with a number of bumps. The first case history is a longwall mine where a simple stress analysis was used to help determine the limiting depth for safely mining in bump-prone ground. The second case history is a room-and-pillar retreat mine where the LaModel analysis is used to help optimize the pillar extraction sequencing in order to minimize the frequent pillar line bumps. The third case history is the Crandall Canyon mine where an initial bump and then a massive pillar collapse/bump which killed 6 miners is extensively back-analyzed. In these case histories, the calculation tools in LaModel are ultimately shown to be very effective for analyzing various aspects of the bump problem, and in the conclusions, a number of critical insights into the practical calculation of mine failure and stability developed as a result of this research are presented.  相似文献   
4.
A novel and generally applicable computer simulation was developed to predict the time evolution of the eroded profiles of air abrasive jet machined surfaces, as a function of process parameters such as: abrasive nozzle size, inclination and distance to target surface, abrasive jet particle velocity, size and flux distribution. The effect of collisions between incoming and rebounding particles was included by the tracking of individual particles, performing inter-particle and particle to surface collision detection, and implementing collision kinematics. The target surface advancement was determined by representing the surface by a grid of cubic cells, each of which was assigned a damage parameter based on the number of particles impacting it. The predictions of eroded profiles of the simulation were tested against those that are experimentally measured for a typical microabrasive blasting setup, with good agreement at low particle flux, and reasonable agreement at high particle flux.  相似文献   
5.
6.
This article numerically scrutinizes magnetohydrodynamic flow of a nanofluid due to a nonlinearly curved stretching surface with third order slip flow conditions. The third order slip flow condition has not yet been discussed in fluid dynamics research. The mathematical modeling of the flow problem is given in partial differential equation form. The governing partial differential equations are transformed to high order ordinary differential equations using the similarity transformation and then solved numerically using a boundary value problem solver, bvp4c from Matlab software. The effect of the governing parameters on the flow of the velocity profile, concentration, and heat transfer characteristics are studied. Also graphs of the skin friction coefficient, local Nusselt number, and Sherwood number are drawn and their numerical values are tabulated. The numerical results of the study are compared with previously published articles in the limiting condition. The velocity of the flow field is reduced as the third order slip parameter and the first order slip parameter rises, but the velocity grows as the values of the second order slip flow parameter are elevated. The findings also indicate that the local Nusselt number is depreciated but local Sherwood numbers are elevated when the Soret and Dufour numbers are larger.  相似文献   
7.
Understanding pedestrian crash causes and contributing factors in developing countries is critically important as they account for about 55% of all traffic crashes. Not surprisingly, considerable attention in the literature has been paid to road traffic crash prediction models and methodologies in developing countries of late. Despite this interest, there are significant challenges confronting safety managers in developing countries. For example, in spite of the prominence of pedestrian crashes occurring on two-way two-lane rural roads, it has proven difficult to develop pedestrian crash prediction models due to a lack of both traffic and pedestrian exposure data. This general lack of available data has further hampered identification of pedestrian crash causes and subsequent estimation of pedestrian safety performance functions. The challenges are similar across developing nations, where little is known about the relationship between pedestrian crashes, traffic flow, and road environment variables on rural two-way roads, and where unique predictor variables may be needed to capture the unique crash risk circumstances. This paper describes pedestrian crash safety performance functions for two-way two-lane rural roads in Ethiopia as a function of traffic flow, pedestrian flows, and road geometry characteristics. In particular, random parameter negative binomial model was used to investigate pedestrian crashes. The models and their interpretations make important contributions to road crash analysis and prevention in developing countries. They also assist in the identification of the contributing factors to pedestrian crashes, with the intent to identify potential design and operational improvements.  相似文献   
8.
This paper presents modeling and experimental analyses of evaporators in “in situ” frozen-food display cabinets at low temperatures in the supermarket industry. Extensive experiments were conducted to measure store and display cabinet relative humidities and temperatures, and pressures, temperatures and mass flow rates of the refrigerant. The mathematical model adopts various empirical correlations of heat transfer coefficients and frost properties in a fin-tube heat exchanger in order to investigate the influence of indoor conditions on the performance of the display cabinets. The model is validated with the experimental data of “in situ” cabinets. The model would be a good guide tool to the design engineers to evaluate the performance of supermarket display cabinet heat exchangers under various store conditions.  相似文献   
9.
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.  相似文献   
10.
Wireless Networks - In this paper we consider a single-cell massive multiple-input-multiple-output scenario, where the number of base station (BS) antennas is larger than the number of single...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号