首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   536篇
  免费   29篇
  国内免费   5篇
电工技术   6篇
综合类   3篇
化学工业   109篇
金属工艺   4篇
机械仪表   40篇
建筑科学   11篇
能源动力   74篇
轻工业   46篇
水利工程   3篇
石油天然气   2篇
无线电   67篇
一般工业技术   98篇
冶金工业   16篇
原子能技术   11篇
自动化技术   80篇
  2024年   3篇
  2023年   9篇
  2022年   36篇
  2021年   51篇
  2020年   44篇
  2019年   40篇
  2018年   48篇
  2017年   24篇
  2016年   25篇
  2015年   20篇
  2014年   22篇
  2013年   49篇
  2012年   31篇
  2011年   27篇
  2010年   30篇
  2009年   28篇
  2008年   19篇
  2007年   18篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有570条查询结果,搜索用时 31 毫秒
1.
In this study, dilute chemical bath deposition technique has been used to deposit CdZnS thin films on soda-lime glass substrates. The structural, morphological, optoelectronic properties of as-grown films have been investigated as a function of different Zn2+ precursor concentrations. The X-ray diffractogram of CdS thin-film reveals a peak corresponding to (002) plane with wurtzite structure, and the peak shift has been observed with the increase of the Zn2+ concentration upon formation of CdZnS thin film. From morphological studies, it has been revealed that the diluted chemical bath deposition technique provides homogeneous distribution of film on the substrate even at a lower concentration of Zn2+. Optical characterization has shown that the transparency of the film is influenced by Zn2+ concentration and when the Zn2+ concentration is varied from 0 M to 0.0256 M, bandgap values of resulting films range from 2.42 eV to 3.90 eV while. Furthermore, electrical properties have shown that with increasing zinc concentration the resistivity of the film increases. Finally, numerical simulation validates and suggests that CdZnS buffer layer with composition of 0.0032 M Zn2+ concentration would be a promising candidate in CIGS solar cell.  相似文献   
2.
Analog Integrated Circuits and Signal Processing - This paper presents carbon nanotube field effect transistor (CNTFET) implementation of voltage differencing current conveyor (VDCC). We propose...  相似文献   
3.
Journal of Low Temperature Physics - This study modeled and investigated the magnetocaloric effect in Ni2MnGa Heusler alloy characterized by its magnetic entropy change (ΔSm) and its...  相似文献   
4.
5.
A 28.5-kb plasmid, isolated from Lactococcus lactis subsp. lactis MPL56, causes complete inhibition of four lactococcal phages. Cell wall characteristics of wild-type strain MPL56 were compared with its 28.5 kb plasmid-cured, phage-sensitive derivative MPL56-22. After proteolytic enzyme treatments, adsorption of phages occurred at high levels, an example is 94.6–98.5% in MPL56 cells. Analysis of cell wall extracts of MPL56-22 by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) indicated that the only difference between strains was the 55.4 kDa band in protein patterns of MPL56. Adsorption of the four phages was completely inhibited when MPL56-22 cells were subjected to SDS, Triton-X-100, HCl and NaOH treatments. Lectins that were specific for glucose/mannose and N-acetylglucosamine did not prevent adsorption of phages in cell wall extracts of MPL 56-22. However a lectin specific for galactose (MCA; Momordica charantia ) completely inhibited adsorption of these phages in cell wall extracts of MPL56-22. HPLC patterns of cell wall carbohydrates of MPL56-22 and its HCl treated preparations showed that the most prevalent difference was the galactose on untreated MPL56-22 cell wall chromatograms.  相似文献   
6.
For the last four decades Unmanned Air Vehicles (UAVs) have been extensively used for military operations that include tracking, surveillance, active engagement with weapons and airborne data acquisition. UAVs are also in demand commercially due to their advantages in comparison to manned vehicles. These advantages include lower manufacturing and operating costs, flexibility in configuration depending on customer request and not risking the pilot on demanding missions. Even though civilian UAVs currently constitute 3 % of the UAV market, it is estimated that their numbers will reach up to 10 % of the UAV market within the next 5 years. Most of the civilian UAV applications require UAVs that are capable of doing a wide range of different and complementary operations within a composite mission. These operations include taking off and landing from limited runway space, while traversing the operation region in considerable cruise speed for mobile tracking applications. This is in addition to being able traverse in low cruise speeds or being able to hover for stationary measurement and tracking. All of these complementary and but different operational capabilities point to a hybrid unmanned vehicle concept, namely the Vertical Take-Off and Landing (VTOL) UAVs. In addition, the desired UAV system needs to be cost-efficient while providing easy payload conversion for different civilian applications. In this paper, we review the preliminary design process of such a capable civilian UAV system, namely the TURAC VTOL UAV. TURAC UAV is aimed to have both vertical take-off and landing and Conventional Take-off and Landing (CTOL) capability. TURAC interchangeable payload pod and detachable wing (with potential different size variants) provides capability to perform different mission types, including long endurance and high cruise speed operations. In addition, the TURAC concept is to have two different variants. The TURAC A variant is an eco-friendly and low-noise fully electrical platform which includes 2 tilt electric motors in the front, and a fixed electric motor and ducted fan in the rear, where as the TURAC B variant is envisioned to use high energy density fuel cells for extended hovering time. In this paper, we provide the TURAC UAV’s iterative design and trade-off studies which also include detailed aerodynamic and structural configuration analysis. For the aerodynamic analysis, an in-house software including graphical user interface has been developed to calculate the aerodynamic forces and moments by using the Vortex Lattice Method (VLM). Computational Fluid Dynamics (CFD) studies are performed to determine the aerodynamic effects for various configurations For structural analysis, a Finite Element Model (FEM) of the TURAC has been prepared and its modal analysis is carried out. Maximum displacements and maximal principal stresses are calculated and used for streamlining a weight efficient fuselage design. Prototypes have been built to show success of the design at both hover and forward flight regime. In this paper, we also provide the flight management and autopilot architecture of the TURAC. The testing of the controller performance has been initiated with the prototype of TURAC. Current work focuses on the building of the full fight test prototype of the TURAC UAV and aerodynamic modeling of the transition flight.  相似文献   
7.
We have investigated the adsorption and reaction of methanol with Au/TiO2 catalysts using a pulsed flow reactor, DRIFTS and TPD. The TiO2 (P25) surface adsorbed a full monolayer of methanol, much of it in a dissociative manner, forming methoxy groups associated with the cationic sites, and hydroxyl groups at the anions. The methoxy is relatively stable until 250 °C, at which point decomposition occurs, producing mainly dimethyl ether by a bimolecular surface reaction. As the concentration of methoxy on the surface diminishes, so the mechanism reverts to a de-oxygenation pathway, producing mainly methane and water (at ~330 °C in TPD), but also with some coincident CO and hydrogen. Au catalysts were prepared by the deposition-precipitation method to give Au loadings between 0.5–3 wt %. The effect of low levels of Au on the reactivity is marked. The pathway which gives methane, which is characteristic of titania, remains, but a new feature of the reaction is the evolution of CO2 and H2 at lower temperature (a peak is seen in TPD at 220 °C), and the elimination of the DME-producing state. Clearly this is associated with the presence of Au and appears to be due to the production of a formate species on the surface of the Au component. This formate species is mainly involved in the reaction of methanol with the Au/TiO2 catalysts which results in a combustion pathway being followed, with complete conversion occurring by ~130 °C.  相似文献   
8.

Speech emotion recognition (SER) systems identify emotions from the human voice in the areas of smart healthcare, driving a vehicle, call centers, automatic translation systems, and human-machine interaction. In the classical SER process, discriminative acoustic feature extraction is the most important and challenging step because discriminative features influence the classifier performance and decrease the computational time. Nonetheless, current handcrafted acoustic features suffer from limited capability and accuracy in constructing a SER system for real-time implementation. Therefore, to overcome the limitations of handcrafted features, in recent years, variety of deep learning techniques have been proposed and employed for automatic feature extraction in the field of emotion prediction from speech signals. However, to the best of our knowledge, there is no in-depth review study is available that critically appraises and summarizes the existing deep learning techniques with their strengths and weaknesses for SER. Hence, this study aims to present a comprehensive review of deep learning techniques, uniqueness, benefits and their limitations for SER. Moreover, this review study also presents speech processing techniques, performance measures and publicly available emotional speech databases. Furthermore, this review also discusses the significance of the findings of the primary studies. Finally, it also presents open research issues and challenges that need significant research efforts and enhancements in the field of SER systems.

  相似文献   
9.
Two phase-based nanocomposites consisting of dielectric barium titanate (BaTiO3 or BTO) and magnetic spinel ferrite Co0.5Ni0.5Nb0.06Fe1.94O4 (CNNFO) have been synthesized through solid state route. Series of (BaTiO3)1-x + (Co0.5Ni0.5Nb0.06Fe1.94O4)x nanocomposites with x content of 0.00, 0.25, 0.50, 0.75, and 1.00 were considered. The structure has been examined via X-rays diffraction (XRD) and indicated the occurrence of both perovskite BTO and spinel CNNFO phases in various nanocomposites. A phase transition from tetragonal BTO structure to cubic structure occurs with inclusion of CNNFO phase. The average crystallites size of BTO phase decreases, whereas that for the CNNFO phase increases with increasing x in various nanocomposites. The morphological observations revealed that the porosity is highly reduced, and the connectivity between grains is enhanced with increasing x content. The optical properties have been investigated by UV−vis diffuse reflectance spectroscopy. The deduced band gap energy (Eg) value is found to reduce with increasing the content of spinel ferrite phase. The magnetic as well as the dielectric properties were also investigated. The analysis showed that CNNFO ferrite phase greatly affects the magnetic properties and dielectric response of BTO material. The obtained findings can be useful to enhance the performances of magneto-dielectric composite-based systems.  相似文献   
10.
Highly porous free-standing co-poly(vinylidene fluoride)/modacrylic/SiO2 nanofibrous membrane was developed using electrically-assisted solution blow spinning method. The performance and the potential of the membrane as a lithium-ion battery separator were investigated. The addition of modacrylic enhanced the solution spinnability that resulted in defect-free membranes. Moreover, the presence of modacrylic enhanced the dimensional and thermal stabilities, while the addition of hydrophilic SiO2 nanoparticle enhanced both mechanical property and ionic conductivity. Combustion test results illustrated that the presence of modacrylic provide flame retarding property over a set of different polymeric-based membranes. Electrochemical performance results showed that the developed membrane can increase the battery capacity compared with the commercial separator.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号